Suppr超能文献

用于大鼠脑基于体素功能映射的多示踪剂小动物PET概率图谱的构建与评估。

Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain.

作者信息

Casteels Cindy, Vermaelen Peter, Nuyts Johan, Van Der Linden Annemie, Baekelandt Veerle, Mortelmans Luc, Bormans Guy, Van Laere Koen

机构信息

Division of Nuclear Medicine, University Hospital Gasthuisberg and Katholieke Universiteit Leuven, Leuven, Belgium.

出版信息

J Nucl Med. 2006 Nov;47(11):1858-66.

Abstract

UNLABELLED

Automated voxel-based or predefined volume-of-interest (VOI) analysis of rodent small-animal PET data is necessary for optimal use of information because the number of available resolution elements is limited. We have mapped metabolic ((18)F-FDG), dopamine transporter (DAT) (2'-(18)F-fluoroethyl(1R-2-exo-3-exe)-8-methyl-3-(4-chlorophenyl)-8-azabicyclo[3.2.1]-octane-2-carboxylate [(18)F-FECT]), and dopaminergic D(2) receptor ((11)C-raclopride) small-animal PET data onto a 3-dimensional T2-weighted MRI rat brain template oriented according to the rat brain Paxinos atlas. In this way, ligand-specific templates for sensitive analysis and accurate anatomic localization were created. Registration accuracy and test-retest and intersubject variability were investigated. Also, the feasibility of individual rat brain statistical parametric mapping (SPM) was explored for (18)F-FDG and DAT imaging of a 6-hydroxydopamine (6OHDA) model of Parkinson's disease.

METHODS

Ten adult Wistar rats were scanned repetitively with multitracer small-animal PET. Registrations and affine spatial normalizations were performed using SPM2. On the MRI template, a VOI map representing the major brain structures was defined according to the stereotactic atlas of Paxinos. (18)F-FDG data were count normalized to the whole-brain uptake, whereas parametric DAT and D(2) binding index images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatching.

RESULTS

Registration accuracy was between 0.24 and 0.86 mm. For (18)F-FDG uptake, intersubject variation ranged from 1.7% to 6.4%. For (11)C-raclopride and (18)F-FECT data, these values were 11.0% and 5.3%, respectively, for the caudate-putamen. Regional test-retest variability of metabolic normalized data ranged from 0.6% to 6.1%, whereas the test-retest variability of the caudate-putamen was 14.0% for (11)C-raclopride and 7.7% for (18)F-FECT. SPM analysis of 3 individual 6OHDA rats showed severe hypometabolism in the ipsilateral sensorimotor cortex (P </= 0.0004) and a striatal decrease in DAT availability (P </= 0.0005, corrected).

CONCLUSION

MRI-based small-animal PET templates facilitate accurate assessment and spatial localization of rat brain function using VOI or voxel-based analysis. Regional intersubject and test-retest variations found in this study, as well as registration errors, indicate that accuracy comparable to the human situation can be achieved. Therefore, small-animal PET with advanced image processing is likely to play a useful role in detailed in vivo molecular imaging of the rat brain.

摘要

未标注

由于可用分辨率元素数量有限,对啮齿类小动物PET数据进行基于体素的自动分析或预定义感兴趣区(VOI)分析对于充分利用信息至关重要。我们已将代谢((18)F-FDG)、多巴胺转运体(DAT)(2'-(18)F-氟乙基(1R-2-exo-3-exe)-8-甲基-3-(4-氯苯基)-8-氮杂双环[3.2.1]-辛烷-2-羧酸酯[(18)F-FECT])和多巴胺能D(2)受体((11)C-雷氯必利)小动物PET数据映射到根据大鼠脑帕西诺斯图谱定向的三维T2加权MRI大鼠脑模板上。通过这种方式,创建了用于敏感分析和精确解剖定位的配体特异性模板。研究了配准精度、重测和个体间变异性。此外,还探讨了对帕金森病6-羟基多巴胺(6OHDA)模型进行(18)F-FDG和DAT成像的个体大鼠脑统计参数映射(SPM)的可行性。

方法

用多示踪剂小动物PET对10只成年Wistar大鼠进行重复扫描。使用SPM2进行配准和仿射空间归一化。在MRI模板上,根据帕西诺斯立体定向图谱定义了代表主要脑结构的VOI图。(18)F-FDG数据经全脑摄取计数归一化,而参数化DAT和D(2)结合指数图像则以小脑为参照构建。使用随机模拟错位和矢量不匹配来确定配准精度。

结果

配准精度在0.24至0.86毫米之间。对于(18)F-FDG摄取,个体间变异范围为1.7%至6.4%。对于(11)C-雷氯必利和(18)F-FECT数据,尾状核-壳核的这些值分别为11.0%和5.3%。代谢归一化数据的区域重测变异性范围为0.6%至6.1%,而尾状核-壳核的重测变异性对于(11)C-雷氯必利为14.0%,对于(18)F-FECT为7.7%。对3只个体6OHDA大鼠的SPM分析显示,同侧感觉运动皮层严重代谢减退(P≤0.0004),纹状体DAT可用性降低(校正后P≤0.0005)。

结论

基于MRI的小动物PET模板有助于使用VOI或基于体素的分析对大鼠脑功能进行准确评估和空间定位。本研究中发现的区域个体间和重测变异以及配准误差表明,可以实现与人体情况相当的精度。因此,具有先进图像处理技术的小动物PET可能在大鼠脑的详细体内分子成像中发挥有用作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验