Suppr超能文献

用于靶向动脉粥样硬化正电子发射断层成像的聚合物纳米颗粒的设计与模块化构建:25%(64)铜 - CANF - 组合的故事

Design and Modular Construction of a Polymeric Nanoparticle for Targeted Atherosclerosis Positron Emission Tomography Imaging: A Story of 25% (64)Cu-CANF-Comb.

作者信息

Woodard Pamela K, Liu Yongjian, Pressly Eric D, Luehmann Hannah P, Detering Lisa, Sultan Deborah E, Laforest Richard, McGrath Alaina J, Gropler Robert J, Hawker Craig J

机构信息

Department of Radiology, Washington University, St. Louis, Missouri, USA.

Materials Research Laboratory, University of California, Santa Barbara, California,, USA.

出版信息

Pharm Res. 2016 Oct;33(10):2400-10. doi: 10.1007/s11095-016-1963-8. Epub 2016 Jun 10.

Abstract

PURPOSE

To assess the physicochemical properties, pharmacokinetic profiles, and in vivo positron emission tomography (PET) imaging of natriuretic peptide clearance receptors (NPRC) expressed on atherosclerotic plaque of a series of targeted, polymeric nanoparticles.

METHODS

To control their structure, non-targeted and targeted polymeric (comb) nanoparticles, conjugated with various amounts of c-atrial natriuretic peptide (CANF, 0, 5, 10 and 25%), were synthesized by controlled and modular chemistry. In vivo pharmacokinetic evaluation of these nanoparticles was performed in wildtype (WT) C57BL/6 mice after (64)Cu radiolabeling. PET imaging was performed on an apolipoprotein E-deficient (ApoE(-/-)) mouse atherosclerosis model to assess the NPRC targeting efficiency. For comparison, an in vivo blood metabolism study was carried out in WT mice.

RESULTS

All three (64)Cu-CANF-comb nanoparticles showed improved biodistribution profiles, including significantly reduced accumulation in both liver and spleen, compared to the non-targeted (64)Cu-comb. Of the three nanoparticles, the 25% (64)Cu-CANF-comb demonstrated the best NPRC targeting specificity and sensitivity in ApoE(-/-) mice. Metabolism studies showed that the radiolabeled CANF-comb was stable in blood up to 9 days. Histopathological analyses confirmed the up-regulation of NPRC along the progression of atherosclerosis.

CONCLUSION

The 25% (64)Cu-CANF-comb demonstrated its potential as a PET imaging agent to detect atherosclerosis progression and status.

摘要

目的

评估一系列靶向聚合物纳米颗粒在动脉粥样硬化斑块上表达的利钠肽清除受体(NPRC)的物理化学性质、药代动力学特征及体内正电子发射断层扫描(PET)成像情况。

方法

通过可控的模块化化学方法合成与不同量的C型心房利钠肽(CANF,0%、5%、10%和25%)偶联的非靶向和靶向聚合物(梳状)纳米颗粒,以控制其结构。对这些纳米颗粒进行⁶⁴Cu放射性标记后,在野生型(WT)C57BL/6小鼠体内进行药代动力学评估。在载脂蛋白E缺陷(ApoE⁻/⁻)小鼠动脉粥样硬化模型上进行PET成像,以评估NPRC靶向效率。作为对照,在WT小鼠体内进行血液代谢研究。

结果

与非靶向⁶⁴Cu-梳状纳米颗粒相比,所有三种⁶⁴Cu-CANF-梳状纳米颗粒均显示出改善的生物分布特征,包括肝脏和脾脏中的蓄积显著减少。在这三种纳米颗粒中,25%的⁶⁴Cu-CANF-梳状纳米颗粒在ApoE⁻/⁻小鼠中表现出最佳的NPRC靶向特异性和敏感性。代谢研究表明,放射性标记的CANF-梳状纳米颗粒在血液中长达9天都是稳定的。组织病理学分析证实,随着动脉粥样硬化的进展,NPRC上调。

结论

25%的⁶⁴Cu-CANF-梳状纳米颗粒显示出作为PET成像剂检测动脉粥样硬化进展和状态的潜力。

相似文献

2
Assessment of Targeted Nanoparticle Assemblies for Atherosclerosis Imaging with Positron Emission Tomography and Potential for Clinical Translation.
ACS Appl Mater Interfaces. 2019 May 1;11(17):15316-15321. doi: 10.1021/acsami.9b02750. Epub 2019 Apr 19.
3
Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer.
Bioconjug Chem. 2013 Feb 20;24(2):196-204. doi: 10.1021/bc300473x. Epub 2013 Jan 11.
5
Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET.
J Nucl Med. 2011 Dec;52(12):1956-63. doi: 10.2967/jnumed.111.089581. Epub 2011 Nov 2.
6
PET/CT imaging of chemokine receptor CCR5 in vascular injury model using targeted nanoparticle.
J Nucl Med. 2014 Apr;55(4):629-34. doi: 10.2967/jnumed.113.132001. Epub 2014 Mar 3.
7
PET/CT Imaging of Chemokine Receptors in Inflammatory Atherosclerosis Using Targeted Nanoparticles.
J Nucl Med. 2016 Jul;57(7):1124-9. doi: 10.2967/jnumed.115.166751. Epub 2016 Jan 21.
8
Development of a CD163-Targeted PET Radiotracer That Images Resident Macrophages in Atherosclerosis.
J Nucl Med. 2024 May 1;65(5):775-780. doi: 10.2967/jnumed.123.266910.
9
PET imaging of chemokine receptors in vascular injury-accelerated atherosclerosis.
J Nucl Med. 2013 Jul;54(7):1135-41. doi: 10.2967/jnumed.112.114777. Epub 2013 May 8.
10
(64)Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque.
Bioconjug Chem. 2014 Feb 19;25(2):231-9. doi: 10.1021/bc400347s. Epub 2014 Jan 31.

引用本文的文献

1
Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors.
ACS Bio Med Chem Au. 2023 Aug 8;3(5):389-417. doi: 10.1021/acsbiomedchemau.3c00021. eCollection 2023 Oct 18.
2
Engineering molecular nanoprobes to target early atherosclerosis: Precise diagnostic tools and promising therapeutic carriers.
Nanotheranostics. 2023 Apr 2;7(3):327-344. doi: 10.7150/ntno.82654. eCollection 2023.
3
Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects.
Mater Today Bio. 2022 Apr 4;14:100249. doi: 10.1016/j.mtbio.2022.100249. eCollection 2022 Mar.
4
Nanotechnology for cardiovascular diseases.
Innovation (Camb). 2022 Feb 2;3(2):100214. doi: 10.1016/j.xinn.2022.100214. eCollection 2022 Mar 29.
8
Radioactive polymeric nanoparticles for biomedical application.
Drug Deliv. 2020 Dec;27(1):1544-1561. doi: 10.1080/10717544.2020.1837296.
9
Application of Nanomaterials in Biomedical Imaging and Cancer Therapy.
Nanomaterials (Basel). 2020 Aug 29;10(9):1700. doi: 10.3390/nano10091700.
10
Molecular Imaging of Inflammation in Ischemic Heart Disease.
Curr Cardiovasc Imaging Rep. 2018 Jun;11(6). doi: 10.1007/s12410-018-9452-6. Epub 2018 Apr 26.

本文引用的文献

1
Nanotechnology applications in thoracic surgery.
Eur J Cardiothorac Surg. 2016 Jul;50(1):6-16. doi: 10.1093/ejcts/ezw002. Epub 2016 Feb 2.
2
Advances in silica based nanoparticles for targeted cancer therapy.
Nanomedicine. 2016 Feb;12(2):317-32. doi: 10.1016/j.nano.2015.10.018. Epub 2015 Dec 17.
3
Nanoparticle-siRNA: A potential cancer therapy?
Crit Rev Oncol Hematol. 2016 Feb;98:159-69. doi: 10.1016/j.critrevonc.2015.10.015. Epub 2015 Oct 31.
4
Novel Applications of Radionuclide Imaging in Peripheral Vascular Disease.
Cardiol Clin. 2016 Feb;34(1):167-77. doi: 10.1016/j.ccl.2015.06.005. Epub 2015 Oct 17.
5
"Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.
Adv Drug Deliv Rev. 2016 Mar 1;98:3-18. doi: 10.1016/j.addr.2015.10.019. Epub 2015 Nov 4.
6
Polymeric Nanostructures for Imaging and Therapy.
Chem Rev. 2015 Oct 14;115(19):10967-1011. doi: 10.1021/acs.chemrev.5b00135. Epub 2015 Aug 4.
7
Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 2: Radiolabeled Probes.
J Nucl Med. 2015 Nov;56(11):1637-41. doi: 10.2967/jnumed.115.164145. Epub 2015 Aug 20.
8
Gold Nanomaterials at Work in Biomedicine.
Chem Rev. 2015 Oct 14;115(19):10410-88. doi: 10.1021/acs.chemrev.5b00193. Epub 2015 Aug 21.
9
Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 1: Compositions and Features.
J Nucl Med. 2015 Oct;56(10):1469-75. doi: 10.2967/jnumed.115.160994. Epub 2015 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验