Luehmann Hannah P, Detering Lisa, Fors Brett P, Pressly Eric D, Woodard Pamela K, Randolph Gwendalyn J, Gropler Robert J, Hawker Craig J, Liu Yongjian
Department of Radiology, Washington University, St. Louis, Missouri.
Department of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, California; and.
J Nucl Med. 2016 Jul;57(7):1124-9. doi: 10.2967/jnumed.115.166751. Epub 2016 Jan 21.
Atherosclerosis is inherently an inflammatory process that is strongly affected by the chemokine-chemokine receptor axes regulating the trafficking of inflammatory cells at all stages of the disease. Of the chemokine receptor family, some specifically upregulated on macrophages play a critical role in plaque development and may have the potential to track plaque progression. However, the diagnostic potential of these chemokine receptors has not been fully realized. On the basis of our previous work using a broad-spectrum peptide antagonist imaging 8 chemokine receptors together, the purpose of this study was to develop a targeted nanoparticle for sensitive and specific detection of these chemokine receptors in both a mouse vascular injury model and a spontaneously developed mouse atherosclerosis model.
The viral macrophage inflammatory protein-II (vMIP-II) was conjugated to a biocompatible poly(methyl methacrylate)-core/polyethylene glycol-shell amphiphilic comblike nanoparticle through controlled conjugation and polymerization before radiolabeling with (64)Cu for PET imaging in an apolipoprotein E-deficient (ApoE(-/-)) mouse vascular injury model and a spontaneous ApoE(-/-) mouse atherosclerosis model. Histology, immunohistochemistry, and real-time reverse transcription polymerase chain reaction were performed to assess the plaque progression and upregulation of chemokine receptors.
The chemokine receptor-targeted (64)Cu-vMIP-II-comb showed extended blood retention and improved biodistribution. PET imaging showed specific tracer accumulation at plaques in ApoE(-/-) mice, confirmed by competitive receptor blocking studies and assessment in wild-type mice. Histopathologic characterization showed the progression of plaque including size and macrophage population, corresponding to the elevated concentration of chemokine receptors and more importantly increased PET signals.
This work provides a useful nanoplatform for sensitive and specific detection of chemokine receptors to assess plaque progression in mouse atherosclerosis models.
动脉粥样硬化本质上是一种炎症过程,在疾病的各个阶段,调节炎症细胞运输的趋化因子 - 趋化因子受体轴对其有强烈影响。在趋化因子受体家族中,一些在巨噬细胞上特异性上调的受体在斑块形成过程中起关键作用,并且可能具有追踪斑块进展的潜力。然而,这些趋化因子受体的诊断潜力尚未得到充分认识。基于我们之前使用广谱肽拮抗剂同时成像8种趋化因子受体的工作,本研究的目的是开发一种靶向纳米颗粒,用于在小鼠血管损伤模型和自发形成的小鼠动脉粥样硬化模型中灵敏且特异性地检测这些趋化因子受体。
通过可控共轭和聚合将病毒巨噬细胞炎性蛋白 - II(vMIP - II)与生物相容性聚甲基丙烯酸甲酯核/聚乙二醇壳两亲梳状纳米颗粒偶联,然后用(64)Cu进行放射性标记,用于载脂蛋白E缺陷(ApoE( - / - ))小鼠血管损伤模型和自发的ApoE( - / - )小鼠动脉粥样硬化模型的PET成像。进行组织学、免疫组织化学和实时逆转录聚合酶链反应以评估斑块进展和趋化因子受体的上调情况。
趋化因子受体靶向的(64)Cu - vMIP - II - 梳状纳米颗粒显示出延长的血液滞留时间和改善的生物分布。PET成像显示ApoE( - / - )小鼠斑块处有特异性示踪剂积聚,竞争性受体阻断研究和在野生型小鼠中的评估证实了这一点。组织病理学特征显示斑块进展,包括大小和巨噬细胞数量,这与趋化因子受体浓度升高相对应,更重要的是PET信号增加。
这项工作为灵敏且特异性地检测趋化因子受体以评估小鼠动脉粥样硬化模型中的斑块进展提供了一个有用的纳米平台。