Sorigué Damien, Légeret Bertrand, Cuiné Stéphan, Morales Pablo, Mirabella Boris, Guédeney Geneviève, Li-Beisson Yonghua, Jetter Reinhard, Peltier Gilles, Beisson Fred
CEA and CNRS and Aix-Marseille Université, Biosciences and Biotechnologies Institute (UMR 7265), Cadarache 13108, France (D.S., B.L., S.C., P.M., B.M., G.G., Y.L.-B., G.P., F.B.); andDepartment of Botany and Department of Chemistry, University of British Columbia, Vancouver V6T 1Z4, Canada (R.J.).
CEA and CNRS and Aix-Marseille Université, Biosciences and Biotechnologies Institute (UMR 7265), Cadarache 13108, France (D.S., B.L., S.C., P.M., B.M., G.G., Y.L.-B., G.P., F.B.); andDepartment of Botany and Department of Chemistry, University of British Columbia, Vancouver V6T 1Z4, Canada (R.J.)
Plant Physiol. 2016 Aug;171(4):2393-405. doi: 10.1104/pp.16.00462. Epub 2016 Jun 10.
Microalgae are considered a promising platform for the production of lipid-based biofuels. While oil accumulation pathways are intensively researched, the possible existence of a microalgal pathways converting fatty acids into alka(e)nes has received little attention. Here, we provide evidence that such a pathway occurs in several microalgal species from the green and the red lineages. In Chlamydomonas reinhardtii (Chlorophyceae), a C17 alkene, n-heptadecene, was detected in the cell pellet and the headspace of liquid cultures. The Chlamydomonas alkene was identified as 7-heptadecene, an isomer likely formed by decarboxylation of cis-vaccenic acid. Accordingly, incubation of intact Chlamydomonas cells with per-deuterated D31-16:0 (palmitic) acid yielded D31-18:0 (stearic) acid, D29-18:1 (oleic and cis-vaccenic) acids, and D29-heptadecene. These findings showed that loss of the carboxyl group of a C18 monounsaturated fatty acid lead to heptadecene formation. Amount of 7-heptadecene varied with growth phase and temperature and was strictly dependent on light but was not affected by an inhibitor of photosystem II. Cell fractionation showed that approximately 80% of the alkene is localized in the chloroplast. Heptadecane, pentadecane, as well as 7- and 8-heptadecene were detected in Chlorella variabilis NC64A (Trebouxiophyceae) and several Nannochloropsis species (Eustigmatophyceae). In contrast, Ostreococcus tauri (Mamiellophyceae) and the diatom Phaeodactylum tricornutum produced C21 hexaene, without detectable C15-C19 hydrocarbons. Interestingly, no homologs of known hydrocarbon biosynthesis genes were found in the Nannochloropsis, Chlorella, or Chlamydomonas genomes. This work thus demonstrates that microalgae have the ability to convert C16 and C18 fatty acids into alka(e)nes by a new, light-dependent pathway.
微藻被认为是生产基于脂质的生物燃料的一个有前景的平台。虽然油脂积累途径得到了深入研究,但微藻中可能存在的将脂肪酸转化为链烷(烯)的途径却很少受到关注。在此,我们提供证据表明,这样的途径存在于绿藻和红藻谱系的几种微藻物种中。在莱茵衣藻(绿藻纲)中,在细胞沉淀和液体培养物的顶空中检测到了一种C17烯烃——正十七碳烯。衣藻中的烯烃被鉴定为7-十七碳烯,这是一种可能由顺式vaccenic酸脱羧形成的异构体。相应地,用全氘代的D31-16:0(棕榈酸)处理完整的衣藻细胞,产生了D31-18:0(硬脂酸)、D29-18:1(油酸和顺式vaccenic酸)以及D29-十七碳烯。这些发现表明,C18单不饱和脂肪酸的羧基丢失会导致十七碳烯的形成。7-十七碳烯的含量随生长阶段和温度而变化,并且严格依赖于光照,但不受光系统II抑制剂的影响。细胞分级分离表明,大约80%的烯烃定位于叶绿体中。在可变小球藻NC64A(绿球藻纲)和几种微拟球藻属物种(等鞭金藻纲)中检测到了正十七烷、正十五烷以及7-和8-十七碳烯。相比之下,塔氏扁藻(扁藻纲)和硅藻三角褐指藻产生了C21六烯,未检测到C15 - C19烃类。有趣的是,在微拟球藻属、小球藻属或衣藻属的基因组中未发现已知烃生物合成基因的同源物。因此,这项工作证明微藻能够通过一种新的、依赖光照的途径将C16和C18脂肪酸转化为链烷(烯)。