Suppr超能文献

基于埃尔曼递归随机神经网络的金融时间序列预测

Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.

作者信息

Wang Jie, Wang Jun, Fang Wen, Niu Hongli

机构信息

School of Science, Beijing Jiaotong University, Beijing 100044, China.

School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China.

出版信息

Comput Intell Neurosci. 2016;2016:4742515. doi: 10.1155/2016/4742515. Epub 2016 May 18.

Abstract

In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

摘要

近年来,金融市场动态预测一直是经济研究的重点。为了预测股票市场的价格指数,我们开发了一种将埃尔曼递归神经网络与随机时间有效函数相结合的架构。通过使用线性回归、复杂度不变距离(CID)和多尺度CID(MCID)分析方法对所提出的模型进行分析,并将该模型与反向传播神经网络(BPNN)、随机时间有效神经网络(STNN)和埃尔曼递归神经网络(ERNN)等不同模型进行比较,实证结果表明,在所提出的神经网络在金融时间序列预测中在这些神经网络中表现最佳。此外,利用所建立的模型对上证综指、台湾证券交易所加权股价指数、韩国综合股价指数和日经225指数的预测效果进行了实证研究,并展示了上述市场指数的相应统计比较。实验结果表明,这种方法在预测股票市场指数的值方面表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af7/4887655/88d2d16e0067/CIN2016-4742515.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验