人工智能在中医领域的应用:多代谢物多靶点相互作用建模的进展
Artificial intelligence in traditional Chinese medicine: advances in multi-metabolite multi-target interaction modeling.
作者信息
Li Yu, Liu Xiangjun, Zhou Jingwen, Li Fengjiao, Wang Yuting, Liu Qingzhong
机构信息
Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
出版信息
Front Pharmacol. 2025 Apr 15;16:1541509. doi: 10.3389/fphar.2025.1541509. eCollection 2025.
Traditional Chinese Medicine (TCM) utilizes multi-metabolite and multi-target interventions to address complex diseases, providing advantages over single-target therapies. However, the active metabolites, therapeutic targets, and especially the combination mechanisms remain unclear. The integration of advanced data analysis and nonlinear modeling capabilities of artificial intelligence (AI) is driving the transformation of TCM into precision medicine. This review concentrates on the application of AI in TCM target prediction, including multi-omics techniques, TCM-specialized databases, machine learning (ML), deep learning (DL), and cross-modal fusion strategies. It also critically analyzes persistent challenges such as data heterogeneity, limited model interpretability, causal confounding, and insufficient robustness validation in practical applications. To enhance the reliability and scalability of AI in TCM target prediction, future research should prioritize continuous optimization of the AI algorithms using zero-shot learning, end-to-end architectures, and self-supervised contrastive learning.
中医利用多代谢物和多靶点干预来治疗复杂疾病,比单靶点疗法具有优势。然而,活性代谢物、治疗靶点,尤其是联合作用机制仍不明确。人工智能(AI)先进的数据分析和非线性建模能力的整合正在推动中医向精准医学转变。本综述聚焦于AI在中医靶点预测中的应用,包括多组学技术、中医专用数据库、机器学习(ML)、深度学习(DL)和跨模态融合策略。它还批判性地分析了一些持续存在的挑战,如数据异质性、模型可解释性有限、因果混杂以及实际应用中稳健性验证不足等问题。为提高AI在中医靶点预测中的可靠性和可扩展性,未来研究应优先使用零样本学习、端到端架构和自监督对比学习等方法对AI算法进行持续优化。