Suppr超能文献

使用递归神经网络预测时间序列基因表达及基因调控网络的结构分析

Prediction of Time Series Gene Expression and Structural Analysis of Gene Regulatory Networks Using Recurrent Neural Networks.

作者信息

Monti Michele, Fiorentino Jonathan, Milanetti Edoardo, Gosti Giorgio, Tartaglia Gian Gaetano

机构信息

RNA System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.

Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.

出版信息

Entropy (Basel). 2022 Jan 18;24(2):141. doi: 10.3390/e24020141.

Abstract

Methods for time series prediction and classification of gene regulatory networks (GRNs) from gene expression data have been treated separately so far. The recent emergence of attention-based recurrent neural network (RNN) models boosted the interpretability of RNN parameters, making them appealing for the understanding of gene interactions. In this work, we generated synthetic time series gene expression data from a range of archetypal GRNs and we relied on a dual attention RNN to predict the gene temporal dynamics. We show that the prediction is extremely accurate for GRNs with different architectures. Next, we focused on the attention mechanism of the RNN and, using tools from graph theory, we found that its graph properties allow one to hierarchically distinguish different architectures of the GRN. We show that the GRN responded differently to the addition of noise in the prediction by the RNN and we related the noise response to the analysis of the attention mechanism. In conclusion, this work provides a way to understand and exploit the attention mechanism of RNNs and it paves the way to RNN-based methods for time series prediction and inference of GRNs from gene expression data.

摘要

到目前为止,从基因表达数据进行基因调控网络(GRN)时间序列预测和分类的方法一直是分开处理的。基于注意力的递归神经网络(RNN)模型的最新出现提高了RNN参数的可解释性,使其在理解基因相互作用方面具有吸引力。在这项工作中,我们从一系列原型GRN生成了合成时间序列基因表达数据,并依靠双注意力RNN来预测基因的时间动态。我们表明,对于不同架构的GRN,预测极其准确。接下来,我们关注RNN的注意力机制,并使用图论工具发现,其图属性允许人们分层区分GRN的不同架构。我们表明,GRN对RNN预测中添加的噪声反应不同,并且我们将噪声反应与注意力机制的分析联系起来。总之,这项工作提供了一种理解和利用RNN注意力机制的方法,并为基于RNN的时间序列预测方法以及从基因表达数据推断GRN铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a80e/8871363/b99b3b548538/entropy-24-00141-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验