Suppr超能文献

使用亚马逊土耳其机器人众包平台作为用于黄斑OCT分割的MapReduce框架。

Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation.

作者信息

Lee Aaron Y, Lee Cecilia S, Keane Pearse A, Tufail Adnan

机构信息

Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA; Medical Retina Service, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.

Medical Retina Service, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; Institute of Ophthalmology, University College London, London WC1E 6BT, UK; National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London SE1 4TT, UK.

出版信息

J Ophthalmol. 2016;2016:6571547. doi: 10.1155/2016/6571547. Epub 2016 May 11.

Abstract

Purpose. To evaluate the feasibility of using Mechanical Turk as a massively parallel platform to perform manual segmentations of macular spectral domain optical coherence tomography (SD-OCT) images using a MapReduce framework. Methods. A macular SD-OCT volume of 61 slice images was map-distributed to Amazon Mechanical Turk. Each Human Intelligence Task was set to $0.01 and required the user to draw five lines to outline the sublayers of the retinal OCT image after being shown example images. Each image was submitted twice for segmentation, and interrater reliability was calculated. The interface was created using custom HTML5 and JavaScript code, and data analysis was performed using R. An automated pipeline was developed to handle the map and reduce steps of the framework. Results. More than 93,500 data points were collected using this framework for the 61 images submitted. Pearson's correlation of interrater reliability was 0.995 (p < 0.0001) and coefficient of determination was 0.991. The cost of segmenting the macular volume was $1.21. A total of 22 individual Mechanical Turk users provided segmentations, each completing an average of 5.5 HITs. Each HIT was completed in an average of 4.43 minutes. Conclusions. Amazon Mechanical Turk provides a cost-effective, scalable, high-availability infrastructure for manual segmentation of OCT images.

摘要

目的。评估使用亚马逊土耳其机器人(Mechanical Turk)作为大规模并行平台,通过MapReduce框架对黄斑区光谱域光学相干断层扫描(SD-OCT)图像进行手动分割的可行性。方法。将包含61张切片图像的黄斑区SD-OCT容积进行映射分发到亚马逊土耳其机器人平台。每个众包任务设定为0.01美元,在向用户展示示例图像后,要求用户绘制五条线来勾勒视网膜OCT图像的子层。每张图像提交两次进行分割,并计算评分者间信度。使用自定义HTML5和JavaScript代码创建界面,并使用R进行数据分析。开发了一个自动化管道来处理框架的映射和归约步骤。结果。使用该框架为提交的61张图像收集了超过93500个数据点。评分者间信度的Pearson相关性为0.995(p < 0.0001),决定系数为0.991。分割黄斑区容积的成本为1.21美元。共有22名亚马逊土耳其机器人平台的用户提供了分割结果,每人平均完成5.5个众包任务。每个众包任务平均用时4.43分钟。结论。亚马逊土耳其机器人平台为OCT图像的手动分割提供了具有成本效益、可扩展且高可用性的基础设施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e243/4879255/a689bdb3b4bd/JOPH2016-6571547.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验