Suppr超能文献

大数据与生物医学信息学:一个具有挑战性的机遇。

Big data and biomedical informatics: a challenging opportunity.

作者信息

Bellazzi R

机构信息

Riccardo Bellazzi, Biomedical Informatics Labs "Mario Stefanelli", Department of Electric, Computer and Biomedical Engineering, University of Pavia, Tel: +39 0382 985720, +39 0382 985059, +39 0382, 985981, Fax: +39 0382 985373, E-mail:

出版信息

Yearb Med Inform. 2014 May 22;9(1):8-13. doi: 10.15265/IY-2014-0024.

Abstract

Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations.

摘要

大数据在生物医学和医疗保健领域正受到越来越多的关注。因此,了解大数据在生物医学信息学领域发挥关键作用的原因很重要。处理大数据的能力正成为开展前所未有的研究以及实施新的医疗服务模式的推动因素。因此,首先有必要深入理解构成大数据的四个要素,即体量、多样性、速度和准确性,以及它们在实际中的意义。然后,必须了解大数据存在于何处,以及在何处可以有益地收集它们。有一些研究领域,如转化生物信息学,需要依靠大数据技术来抵御每天产生的数据冲击波。从流行病学到临床护理等其他领域,可以从利用如今可用的大量数据中受益,从个人监测到初级护理。然而,构建支持大数据的系统在研究的可重复性以及隐私和数据访问管理方面具有相关影响;应该采取适当行动来处理这些问题。大数据场景的一个有趣结果是出现了新的软件、方法和工具,如图 MapReduce、云计算和概念漂移机器学习算法,它们不仅将有助于大数据研究,而且在许多生物医学信息学应用中可能是有益的。利用大数据机遇的前进道路将需要正确应用工程原理来设计研究和应用,避免先入之见或过度热情,充分利用现有技术,并改进数据处理和数据管理规则。

相似文献

1
Big data and biomedical informatics: a challenging opportunity.
Yearb Med Inform. 2014 May 22;9(1):8-13. doi: 10.15265/IY-2014-0024.
2
Big Data Analytics in Medicine and Healthcare.
J Integr Bioinform. 2018 May 10;15(3):20170030. doi: 10.1515/jib-2017-0030.
3
Big data in medicine is driving big changes.
Yearb Med Inform. 2014 Aug 15;9(1):14-20. doi: 10.15265/IY-2014-0020.
6
Big data - smart health strategies. Findings from the yearbook 2014 special theme.
Yearb Med Inform. 2014 Aug 15;9(1):48-51. doi: 10.15265/IY-2014-0031.
7
Translational medicine in the Age of Big Data.
Brief Bioinform. 2019 Mar 22;20(2):457-462. doi: 10.1093/bib/bbx116.
8
Big data for health.
IEEE J Biomed Health Inform. 2015 Jul;19(4):1193-208. doi: 10.1109/JBHI.2015.2450362. Epub 2015 Jul 10.
9
Big Data Application in Biomedical Research and Health Care: A Literature Review.
Biomed Inform Insights. 2016 Jan 19;8:1-10. doi: 10.4137/BII.S31559. eCollection 2016.
10
The basics of data, big data, and machine learning in clinical practice.
Clin Rheumatol. 2021 Jan;40(1):11-23. doi: 10.1007/s10067-020-05196-z. Epub 2020 Jun 5.

引用本文的文献

4
Optimizing the Clinical Direction of Artificial Intelligence With Health Policy: A Narrative Review of the Literature.
Cureus. 2024 Apr 16;16(4):e58400. doi: 10.7759/cureus.58400. eCollection 2024 Apr.
5
Machine learning in cardiac surgery: a narrative review.
J Thorac Dis. 2024 Apr 30;16(4):2644-2653. doi: 10.21037/jtd-23-1659. Epub 2024 Apr 24.
6
Establishment-level occupational safety analytics: Challenges and opportunities.
Int J Ind Ergon. 2023 Mar;94. doi: 10.1016/j.ergon.2023.103428.
7
Translational Bioinformatics Applied to the Study of Complex Diseases.
Genes (Basel). 2023 Feb 6;14(2):419. doi: 10.3390/genes14020419.
9
Precision Medicine: An Optimal Approach to Patient Care in Renal Cell Carcinoma.
Front Med (Lausanne). 2022 Jun 14;9:766869. doi: 10.3389/fmed.2022.766869. eCollection 2022.

本文引用的文献

1
Why Big Data Won't Cure Us.
Big Data. 2013 Sep;1(3):117-123. doi: 10.1089/big.2013.0029.
2
Big data. The parable of Google Flu: traps in big data analysis.
Science. 2014 Mar 14;343(6176):1203-5. doi: 10.1126/science.1248506.
3
Health research and systems' governance are at risk: should the right to data protection override health?
J Med Ethics. 2014 Jul;40(7):488-92. doi: 10.1136/medethics-2013-101603.
4
Genomes in the cloud: balancing privacy rights and the public good.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:128. eCollection 2013.
6
Leverage hadoop framework for large scale clinical informatics applications.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:53. eCollection 2013.
7
Empowering village doctors and enhancing rural healthcare using cloud computing in a rural area of mainland China.
Comput Methods Programs Biomed. 2014 Feb;113(2):585-92. doi: 10.1016/j.cmpb.2013.10.005. Epub 2013 Nov 9.
8
Enabling large-scale biomedical analysis in the cloud.
Biomed Res Int. 2013;2013:185679. doi: 10.1155/2013/185679. Epub 2013 Oct 31.
9
Exposome informatics: considerations for the design of future biomedical research information systems.
J Am Med Inform Assoc. 2014 May-Jun;21(3):386-90. doi: 10.1136/amiajnl-2013-001772. Epub 2013 Nov 1.
10
Big data in biomedicine.
Drug Discov Today. 2014 Apr;19(4):433-40. doi: 10.1016/j.drudis.2013.10.012. Epub 2013 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验