文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

四氧化三铁纳米粒子在生物医学应用中的作用展望。

Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications.

作者信息

Ghazanfari Mohammad Reza, Kashefi Mehrdad, Shams Seyyedeh Fatemeh, Jaafari Mahmoud Reza

机构信息

Department of Material Science and Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.

Biotechnology Research Center and Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 917751365, Iran.

出版信息

Biochem Res Int. 2016;2016:7840161. doi: 10.1155/2016/7840161. Epub 2016 May 12.


DOI:10.1155/2016/7840161
PMID:27293893
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4884576/
Abstract

In recent years, although many review articles have been presented about bioapplications of magnetic nanoparticles by some research groups with different expertise such as chemistry, biology, medicine, pharmacology, and materials science and engineering, the majority of these reviews are insufficiently comprehensive in all related topics like magnetic aspects of process. In the current review, it is attempted to carry out the inclusive surveys on importance of magnetic nanoparticles and especially magnetite ones and their required conditions for appropriate performance in bioapplications. The main attentions of this paper are focused on magnetic features which are less considered. Accordingly, the review contains essential magnetic properties and their measurement methods, synthesis techniques, surface modification processes, and applications of magnetic nanoparticles.

摘要

近年来,尽管一些来自化学、生物学、医学、药理学以及材料科学与工程等不同专业领域的研究团队发表了许多关于磁性纳米粒子生物应用的综述文章,但这些综述大多在诸如过程的磁性方面等所有相关主题上不够全面。在当前的综述中,我们试图对磁性纳米粒子尤其是磁铁矿纳米粒子的重要性及其在生物应用中实现适当性能所需的条件进行全面调查。本文的主要关注点集中在那些较少被考虑的磁性特征上。因此,该综述涵盖了基本的磁性性质及其测量方法、合成技术、表面改性工艺以及磁性纳米粒子的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/e81620a83eb4/BRI2016-7840161.021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/9eba1c6a65d8/BRI2016-7840161.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/71b0597634ee/BRI2016-7840161.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/bb369abf37e2/BRI2016-7840161.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/53b5443292f3/BRI2016-7840161.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/bad562bb2a7c/BRI2016-7840161.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/cd300aea3312/BRI2016-7840161.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/243dbddc1260/BRI2016-7840161.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/5a7e0435b590/BRI2016-7840161.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/3ce93a2d7c68/BRI2016-7840161.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/139d3d279c67/BRI2016-7840161.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/89849799e3b0/BRI2016-7840161.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/455056773476/BRI2016-7840161.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/22af8645bece/BRI2016-7840161.013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/44c6841644bc/BRI2016-7840161.014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/5e24c8ca6b2f/BRI2016-7840161.015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/d603a95c14d8/BRI2016-7840161.016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/4bdf3b933a90/BRI2016-7840161.017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/a41d07e8ef7c/BRI2016-7840161.018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/5d39997dbc54/BRI2016-7840161.019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/dbfd9a3db064/BRI2016-7840161.020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/e81620a83eb4/BRI2016-7840161.021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/9eba1c6a65d8/BRI2016-7840161.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/71b0597634ee/BRI2016-7840161.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/bb369abf37e2/BRI2016-7840161.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/53b5443292f3/BRI2016-7840161.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/bad562bb2a7c/BRI2016-7840161.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/cd300aea3312/BRI2016-7840161.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/243dbddc1260/BRI2016-7840161.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/5a7e0435b590/BRI2016-7840161.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/3ce93a2d7c68/BRI2016-7840161.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/139d3d279c67/BRI2016-7840161.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/89849799e3b0/BRI2016-7840161.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/455056773476/BRI2016-7840161.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/22af8645bece/BRI2016-7840161.013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/44c6841644bc/BRI2016-7840161.014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/5e24c8ca6b2f/BRI2016-7840161.015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/d603a95c14d8/BRI2016-7840161.016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/4bdf3b933a90/BRI2016-7840161.017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/a41d07e8ef7c/BRI2016-7840161.018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/5d39997dbc54/BRI2016-7840161.019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/dbfd9a3db064/BRI2016-7840161.020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129f/4884576/e81620a83eb4/BRI2016-7840161.021.jpg

相似文献

[1]
Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications.

Biochem Res Int. 2016

[2]
Preparation of Magnetic Nanoparticles for Biomedical Applications.

Methods Mol Biol. 2017

[3]
Nanozymes: Biomedical Applications of Enzymatic FeO Nanoparticles from In Vitro to In Vivo.

Adv Exp Med Biol. 2019

[4]
Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.

Nanoscale. 2015-5-14

[5]
pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

Mater Sci Eng C Mater Biol Appl. 2017-8-1

[6]
A universal magnetic ferrofluid: Nanomagnetite stable hydrosol with no added dispersants and at neutral pH.

J Colloid Interface Sci. 2016-4-15

[7]
Appropriate Size of Magnetic Nanoparticles for Various Bioapplications in Cancer Diagnostics and Therapy.

ACS Appl Mater Interfaces. 2016-2-10

[8]
Tissue engineering using magnetite nanoparticles.

Prog Mol Biol Transl Sci. 2011

[9]
Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold.

Biomater Sci. 2017-10-24

[10]
Current investigations into magnetic nanoparticles for biomedical applications.

J Biomed Mater Res A. 2016-5

引用本文的文献

[1]
Global research progress of nanomedicine and colorectal cancer: a bibliometrics and visualization analysis.

Front Oncol. 2024-12-6

[2]
Enhanced Delivery and Potency of Chemotherapeutics in Melanoma Treatment via Magnetite Nanobioconjugates.

ACS Omega. 2024-10-30

[3]
FeO coated stent prevent artery neointimal hyperplasia by inhibiting vascular smooth muscle cell proliferation.

Mater Today Bio. 2024-6-20

[4]
Molecular Docking Approach for Biological Interaction of Green Synthesized Nanoparticles.

Molecules. 2024-5-21

[5]
A Study of Hyaluronic Acid's Theoretical Reactivity and of Magnetic Nanoparticles Capped with Hyaluronic Acid.

Materials (Basel). 2024-3-7

[6]
Recent Advances in the Role of Different Nanoparticles in the Various Biosensors for the Detection of the Chikungunya Virus.

Mol Biotechnol. 2025-1

[7]
Magnetoelectric Nanodiscs Enable Wireless Transgene-Free Neuromodulation.

bioRxiv. 2023-12-25

[8]
Evaluation of a temperature-responsive magnetotocosome as a magnetic targeting drug delivery system for sorafenib tosylate anticancer drug.

Heliyon. 2023-11-4

[9]
The effect of fuel on the physiochemical properties of ZnFeO synthesized by solution combustion method.

Turk J Chem. 2022-7-21

[10]
Concurrent Dual-Contrast Enhancement Using FeO Nanoparticles to Achieve a CEST Signal Controllability.

ACS Omega. 2023-6-29

本文引用的文献

[1]
In vivo anti-cancer efficacy of magnetite nanocrystal--based system using locoregional hyperthermia combined with 5-fluorouracil chemotherapy.

Biomaterials. 2013-7-19

[2]
Cationic albumin-conjugated magnetite nanoparticles, novel candidate for hyperthermia cancer therapy.

Int J Hyperthermia. 2013-7-17

[3]
Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer.

Eur J Pharm Biopharm. 2013-11

[4]
PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting.

Int J Pharm. 2012-1-14

[5]
Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION).

Nano Rev. 2010

[6]
Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies.

Nanoscale Res Lett. 2008-10-2

[7]
Exchange-coupled magnetic nanoparticles for efficient heat induction.

Nat Nanotechnol. 2011-6-26

[8]
Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles.

Adv Colloid Interface Sci. 2011-4-30

[9]
Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy.

Adv Drug Deliv Rev. 2010-5-26

[10]
Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles.

Adv Mater. 2010-7-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索