文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A Study of Hyaluronic Acid's Theoretical Reactivity and of Magnetic Nanoparticles Capped with Hyaluronic Acid.

作者信息

Răcuciu Mihaela, Oancea Simona, Barbu-Tudoran Lucian, Drăghici Olga, Agavriloaei Anda, Creangă Dorina

机构信息

Environmental Sciences and Physics Department, Faculty of Sciences, Lucian Blaga University of Sibiu, Dr. I. Ratiu Str., no. 5-7, 550012 Sibiu, Romania.

Agricultural Sciences and Food Engineering Department, Lucian Blaga University of Sibiu, Dr. I. Ratiu Str., no. 7-9, 550012 Sibiu, Romania.

出版信息

Materials (Basel). 2024 Mar 7;17(6):1229. doi: 10.3390/ma17061229.


DOI:10.3390/ma17061229
PMID:38541384
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10971869/
Abstract

Hyaluronic acid (HA) has attracted much attention in tumor-targeted drug delivery due to its ability to specifically bind to the CD44 cellular receptor, which is widely expressed on cancer cells. We present HA-capped magnetic nanoparticles (HA-MNPs) obtained via the co-precipitation method, followed by the electrostatic adsorption of HA onto the nanoparticles' surfaces. A theoretical study carried out with the PM3 method evidenced a dipole moment of 3.34 D and negatively charged atom groups able to participate in interactions with nanoparticle surface cations and surrounding water molecules. The ATR-FTIR spectrum evidenced the hyaluronic acid binding to the surface of the ferrophase, ensuring colloidal stability in the water dispersion. To verify the success of the synthesis and stabilization, HA-MNPs were also characterized using other investigation techniques: TEM, EDS, XRD, DSC, TG, NTA, and VSM. The results showed that the HA-MNPs had a mean physical size of 9.05 nm (TEM investigation), a crystallite dimension of about 8.35 nm (XRD investigation), and a magnetic core diameter of about 8.31 nm (VSM investigation). The HA-MNPs exhibited superparamagnetic behavior, with the magnetization curve showing saturation at a high magnetic field and a very small coercive field, corresponding to the net dominance of single-domain magnetic nanoparticles that were not aggregated with reversible magnetizability. These features satisfy the requirement for magnetic nanoparticles with a small size and good dispersibility for long-term stability. We performed some preliminary tests regarding the nanotoxicity in the environment, and some chromosomal aberrations were found to be induced in corn root meristems, especially in the anaphase and metaphase of mitotic cells. Due to their properties, HA-MNPs also seem to be suitable for use in the biomedical field.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/bf9212f17a88/materials-17-01229-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/fb6b63061831/materials-17-01229-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/ea0e5c160e66/materials-17-01229-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/bc5e5de7e827/materials-17-01229-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/94ce75697bee/materials-17-01229-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/7d551f82fd42/materials-17-01229-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/7371439138e4/materials-17-01229-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/e6800add02ab/materials-17-01229-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/8905bb42fc66/materials-17-01229-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/dd02c2135fe6/materials-17-01229-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/94dceab52bff/materials-17-01229-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/434044ed95e4/materials-17-01229-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/02d31913401e/materials-17-01229-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/4050c8395182/materials-17-01229-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/bf9212f17a88/materials-17-01229-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/fb6b63061831/materials-17-01229-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/ea0e5c160e66/materials-17-01229-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/bc5e5de7e827/materials-17-01229-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/94ce75697bee/materials-17-01229-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/7d551f82fd42/materials-17-01229-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/7371439138e4/materials-17-01229-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/e6800add02ab/materials-17-01229-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/8905bb42fc66/materials-17-01229-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/dd02c2135fe6/materials-17-01229-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/94dceab52bff/materials-17-01229-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/434044ed95e4/materials-17-01229-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/02d31913401e/materials-17-01229-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/4050c8395182/materials-17-01229-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3862/10971869/bf9212f17a88/materials-17-01229-g014.jpg

相似文献

[1]
A Study of Hyaluronic Acid's Theoretical Reactivity and of Magnetic Nanoparticles Capped with Hyaluronic Acid.

Materials (Basel). 2024-3-7

[2]
Aspartic Acid Stabilized Iron Oxide Nanoparticles for Biomedical Applications.

Nanomaterials (Basel). 2022-3-30

[3]
Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

Molecules. 2013-6-27

[4]
Synthesis of Hyaluronic Acid-Conjugated FeO@CeO Composite Nanoparticles for a Target-Oriented Multifunctional Drug Delivery System.

Micromachines (Basel). 2021-8-26

[5]
Various type immobilizations of Isocitrate dehydrogenases enzyme on hyaluronic acid modified magnetic nanoparticles as stable biocatalysts.

Int J Biol Macromol. 2021-7-1

[6]
Hyaluronic Acid-Stabilized FeO Nanoparticles for Promoting Magnetic Resonance Imaging of Tumors.

Front Pharmacol. 2022-7-15

[7]
Hyaluronan-Metal Gold Nanoparticle Hybrids for Targeted Tumor Cell Therapy.

Int J Mol Sci. 2020-4-27

[8]
A biological method for in-situ synthesis of hydroxyapatite-coated magnetite nanoparticles using Enterobacter aerogenes: Characterization and acute toxicity assessments.

Mater Sci Eng C Mater Biol Appl. 2016-12-13

[9]
Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: blood compatibility evaluation and targeted drug delivery in cancer cells.

Langmuir. 2011-10-27

[10]
Hyaluronan magnetic nanoparticle for mitoxantrone delivery toward CD44-positive cancer cells.

Colloids Surf B Biointerfaces. 2018-7-11

引用本文的文献

[1]
CD44 Receptor-Mediated Ferroptosis Induction by Hyaluronic Acid Carbon Quantum Dots in Triple-Negative Breast Cancer Cells Through Downregulation of SLC7A11 Pathway.

Materials (Basel). 2025-5-6

[2]
Assessment of Potential Toxicity of Hyaluronic Acid-Coated Magnetic Nanoparticles on Maize () at Early Development Stages.

Molecules. 2025-3-14

[3]
Preparation, Evaluation, and Bioinformatics Study of Hyaluronic Acid-Modified Ginsenoside Rb1 Self-Assembled Nanoparticles for Treating Cardiovascular Diseases.

Molecules. 2024-9-18

本文引用的文献

[1]
Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review.

Pharmaceutics. 2023-6-12

[2]
Synthesis, characterization and evaluation of hyaluronic acid-based polymers for nasal delivery.

Int J Pharm. 2023-1-25

[3]
Influence of magnetic nanoparticle biotransformation on contrasting efficiency and iron metabolism.

J Nanobiotechnology. 2022-12-17

[4]
Toxicity Analysis of Hybrid Nanodiamond/FeO Nanoparticles on L.

J Toxicol. 2022-9-19

[5]
Hyaluronic Acid-Stabilized FeO Nanoparticles for Promoting Magnetic Resonance Imaging of Tumors.

Front Pharmacol. 2022-7-15

[6]
A Review on Current Strategies for Extraction and Purification of Hyaluronic Acid.

Int J Mol Sci. 2022-5-27

[7]
Chitosan-Hyaluronan Nanoparticles for Vinblastine Sulfate Delivery: Characterization and Internalization Studies on K-562 Cells.

Pharmaceutics. 2022-4-26

[8]
Aspartic Acid Stabilized Iron Oxide Nanoparticles for Biomedical Applications.

Nanomaterials (Basel). 2022-3-30

[9]
Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives.

Pharmaceutics. 2022-1-16

[10]
Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves.

ACS Appl Bio Mater. 2021-8-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索