Suppr超能文献

重组木质素降解过氧化物酶生产与应用中的进展与障碍

Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases.

作者信息

Lambertz Camilla, Ece Selin, Fischer Rainer, Commandeur Ulrich

机构信息

a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany.

b Fraunhofer Institute for Molecular Biology and Applied Ecology , Aachen , Germany.

出版信息

Bioengineered. 2016 Apr;7(3):145-54. doi: 10.1080/21655979.2016.1191705. Epub 2016 Jun 13.

Abstract

Lignin is 1 of the 3 major components of lignocellulose. Its polymeric structure includes aromatic subunits that can be converted into high-value-added products, but this potential cannot yet been fully exploited because lignin is highly recalcitrant to degradation. Different approaches for the depolymerization of lignin have been tested, including pyrolysis, chemical oxidation, and hydrolysis under supercritical conditions. An additional strategy is the use of lignin-degrading enzymes, which imitates the natural degradation process. A versatile set of enzymes for lignin degradation has been identified, and research has focused on the production of recombinant enzymes in sufficient amounts to characterize their structure and reaction mechanisms. Enzymes have been analyzed individually and in combinations using artificial substrates, lignin model compounds, lignin and lignocellulose. Here we consider progress in the production of recombinant lignin-degrading peroxidases, the advantages and disadvantages of different expression hosts, and obstacles that must be overcome before such enzymes can be characterized and used for the industrial processing of lignin.

摘要

木质素是木质纤维素的三大主要成分之一。其聚合物结构包含可转化为高附加值产品的芳香亚基,但由于木质素对降解具有高度抗性,这种潜力尚未得到充分开发。人们已经测试了多种木质素解聚方法,包括热解、化学氧化和超临界条件下的水解。另一种策略是使用木质素降解酶,这模仿了自然降解过程。已经鉴定出一套用于木质素降解的通用酶,并且研究集中在大量生产重组酶以表征其结构和反应机制。已经使用人工底物、木质素模型化合物、木质素和木质纤维素对酶进行了单独和组合分析。在这里,我们考虑重组木质素降解过氧化物酶生产方面的进展、不同表达宿主的优缺点,以及在这些酶能够被表征并用于木质素工业加工之前必须克服的障碍。

相似文献

1
Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases.
Bioengineered. 2016 Apr;7(3):145-54. doi: 10.1080/21655979.2016.1191705. Epub 2016 Jun 13.
2
Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Pichia methanolica.
Biotechnol Lett. 2004 Oct;26(20):1569-73. doi: 10.1023/B:BILE.0000045654.66689.b4.
4
Insights into lignin degradation and its potential industrial applications.
Adv Appl Microbiol. 2013;82:1-28. doi: 10.1016/B978-0-12-407679-2.00001-6.
6
Redesign of a New Manganese Peroxidase Highly Expressed in Pichia pastoris towards a Lignin-Degrading Versatile Peroxidase.
Chembiochem. 2018 Dec 4;19(23):2481-2489. doi: 10.1002/cbic.201800500. Epub 2018 Nov 20.
7
Microbial lignin peroxidases: Applications, production challenges and future perspectives.
Enzyme Microb Technol. 2020 Nov;141:109669. doi: 10.1016/j.enzmictec.2020.109669. Epub 2020 Sep 15.
8
Improvement of ligninolytic properties in the hyper lignin-degrading fungus Phanerochaete sordida YK-624 using a novel gene promoter.
FEMS Microbiol Lett. 2012 Jun;331(1):81-8. doi: 10.1111/j.1574-6968.2012.02556.x. Epub 2012 Apr 17.
9
Expression of a Phanerochaete chrysosporium manganese peroxidase gene in the yeast Pichia pastoris.
Biotechnol Prog. 2003 Sep-Oct;19(5):1403-9. doi: 10.1021/bp025781h.
10
The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes.
Appl Microbiol Biotechnol. 2008 Dec;81(3):399-417. doi: 10.1007/s00253-008-1706-9. Epub 2008 Sep 20.

引用本文的文献

1
Diet and environment drive the convergence of gut microbiome in wild-released giant pandas and forest musk deer.
iScience. 2025 Jun 7;28(7):112837. doi: 10.1016/j.isci.2025.112837. eCollection 2025 Jul 18.
2
Lignocellulose degradation in bacteria and fungi: cellulosomes and industrial relevance.
Front Microbiol. 2025 Apr 25;16:1583746. doi: 10.3389/fmicb.2025.1583746. eCollection 2025.
4
Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: linking lignin source and processing with clinical indication.
Biomass Convers Biorefin. 2024;14(21):26553-26574. doi: 10.1007/s13399-023-03745-5. Epub 2023 Jan 21.
5
Display of Lignin Peroxidase on the Surface of Bacillus subtilis.
Appl Biochem Biotechnol. 2024 Oct;196(10):6849-6863. doi: 10.1007/s12010-024-04869-8. Epub 2024 Feb 27.
6
-associated bacteria play a key role in obtaining nutrition from bamboo for the giant panda ().
Microbiol Spectr. 2024 Mar 5;12(3):e0381923. doi: 10.1128/spectrum.03819-23. Epub 2024 Feb 2.
7
Electrochemical Actuation of a DyP Peroxidase: A Facile Method for Drastic Improvement of the Catalytic Performance.
ACS Catal. 2023 May 18;13(11):7437-7449. doi: 10.1021/acscatal.3c01530. eCollection 2023 Jun 2.
8
Genomics analysis and degradation characteristics of lignin by Streptomyces thermocarboxydus strain DF3-3.
Biotechnol Biofuels Bioprod. 2022 Jul 12;15(1):78. doi: 10.1186/s13068-022-02175-1.

本文引用的文献

1
Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds.
Arch Biochem Biophys. 2016 Mar 15;594:54-60. doi: 10.1016/j.abb.2016.02.019. Epub 2016 Feb 18.
3
Laccases for biorefinery applications: a critical review on challenges and perspectives.
Bioprocess Biosyst Eng. 2015 Dec;38(12):2285-313. doi: 10.1007/s00449-015-1475-7. Epub 2015 Oct 5.
4
Enzymatic conversion of lignin into renewable chemicals.
Curr Opin Chem Biol. 2015 Dec;29:10-7. doi: 10.1016/j.cbpa.2015.06.009. Epub 2015 Jun 26.
6
Engineering a fungal peroxidase that degrades lignin at very acidic pH.
Biotechnol Biofuels. 2014 Jul 24;7:114. doi: 10.1186/1754-6834-7-114. eCollection 2014.
8
Lignin-degrading enzymes.
FEBS J. 2015 Apr;282(7):1190-213. doi: 10.1111/febs.13224. Epub 2015 Feb 20.
9
Can laccases catalyze bond cleavage in lignin?
Biotechnol Adv. 2015 Jan-Feb;33(1):13-24. doi: 10.1016/j.biotechadv.2014.12.008. Epub 2015 Jan 3.
10
Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B.
Arch Biochem Biophys. 2015 May 15;574:93-8. doi: 10.1016/j.abb.2014.12.022. Epub 2015 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验