Pavelka Antonin, Sebestova Eva, Kozlikova Barbora, Brezovsky Jan, Sochor Jiri, Damborsky Jiri
IEEE/ACM Trans Comput Biol Bioinform. 2016 May-Jun;13(3):505-17. doi: 10.1109/TCBB.2015.2459680.
The biological function of a macromolecule often requires that a small molecule or ion is transported through its structure. The transport pathway often leads through void spaces in the structure. The properties of transport pathways change significantly in time; therefore, the analysis of a trajectory from molecular dynamics rather than of a single static structure is needed for understanding the function of pathways. The identification and analysis of transport pathways are challenging because of the high complexity and diversity of macromolecular shapes, the thermal motion of their atoms, and the large amount of conformations needed to properly describe conformational space of protein structure. In this paper, we describe the principles of the CAVER 3.0 algorithms for the identification and analysis of properties of transport pathways both in static and dynamic structures. Moreover, we introduce the improved clustering solution for finding tunnels in macromolecules, which is included in the latest CAVER 3.02 version. Voronoi diagrams are used to identify potential pathways in each snapshot of a molecular dynamics trajectory and clustering is then used to find the correspondence between tunnels from different snapshots. Furthermore, the geometrical properties of pathways and their evolution in time are computed and visualized.
大分子的生物学功能通常要求小分子或离子通过其结构进行运输。运输途径通常穿过结构中的空隙。运输途径的性质会随时间发生显著变化;因此,为了理解途径的功能,需要分析分子动力学轨迹而非单个静态结构。由于大分子形状的高度复杂性和多样性、其原子的热运动以及正确描述蛋白质结构构象空间所需的大量构象,运输途径的识别和分析具有挑战性。在本文中,我们描述了CAVER 3.0算法用于识别和分析静态和动态结构中运输途径性质的原理。此外,我们介绍了用于在大分子中寻找通道的改进聚类解决方案,该方案包含在最新的CAVER 3.02版本中。Voronoi图用于识别分子动力学轨迹每个快照中的潜在途径,然后使用聚类来找到不同快照中通道之间的对应关系。此外,还计算并可视化了途径的几何性质及其随时间的演变。