UniSA STEM, University of South Australia, Adelaide, SA 5001, Australia.
School of Engineering and Technology, Central Queensland University, Melbourne, VIC 3000, Australia.
Int J Environ Res Public Health. 2022 Dec 14;19(24):16798. doi: 10.3390/ijerph192416798.
The immense growth of the population generates a polluted environment that must be managed to ensure environmental sustainability, versatility and efficiency in our everyday lives. Particularly, the municipality is unable to cope with the increase in garbage, and many urban areas are becoming increasingly difficult to manage. The advancement of technology allows researchers to transmit data from municipal bins using smart IoT (Internet of Things) devices. These bin data can contribute to a compelling analysis of waste management instead of depending on the historical dataset. Thus, this study proposes forecasting models comprising of 1D CNN (Convolutional Neural Networks) long short-term memory (LSTM), gated recurrent units (GRU) and bidirectional long short-term memory (Bi-LSTM) for time series prediction of public bins. The execution of the models is evaluated by Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Coefficient determination (R) and Root Mean Squared Error (RMSE). For different numbers of epochs, hidden layers, dense layers, and different units in hidden layers, the RSME values measured for 1D CNN, LSTM, GRU and Bi-LSTM models are 1.12, 1.57, 1.69 and 1.54, respectively. The best MAPE value is 1.855, which is found for the LSTM model. Therefore, our findings indicate that LSTM can be used for bin emptiness or fullness prediction for improved planning and management due to its proven resilience and increased forecast accuracy.
人口的大量增长产生了污染环境,必须加以管理,以确保环境的可持续性、多功能性和日常生活中的效率。特别是,市政府无法应对垃圾的增加,许多城市地区越来越难以管理。技术的进步使研究人员能够使用智能物联网 (IoT) 设备传输来自市政垃圾桶的数据。这些垃圾桶数据可以有助于对废物管理进行引人注目的分析,而不必依赖历史数据集。因此,本研究提出了包含 1D CNN(卷积神经网络)长短期记忆 (LSTM)、门控循环单元 (GRU) 和双向长短期记忆 (Bi-LSTM) 的预测模型,用于公共垃圾桶的时间序列预测。通过平均绝对误差 (MAE)、平均绝对百分比误差 (MAPE)、确定系数 (R) 和均方根误差 (RMSE) 来评估模型的执行情况。对于不同数量的时期、隐藏层、密集层和隐藏层中的不同单元,1D CNN、LSTM、GRU 和 Bi-LSTM 模型测量的 RMSE 值分别为 1.12、1.57、1.69 和 1.54。最佳的 MAPE 值为 1.855,这是在 LSTM 模型中发现的。因此,我们的研究结果表明,由于 LSTM 的弹性和提高的预测准确性,LSTM 可用于垃圾桶空或满的预测,以进行改进的规划和管理。