Department of Environmental Engineering, Santo Tomás University, Road 9 Street 51-11, Bogotá 110231, Colombia.
Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, 46022 Valencia, Spain.
Int J Environ Res Public Health. 2023 Feb 27;20(5):4256. doi: 10.3390/ijerph20054256.
The development of methodologies to support decision-making in municipal solid waste (MSW) management processes is of great interest for municipal administrations. Artificial intelligence (AI) techniques provide multiple tools for designing algorithms to objectively analyze data while creating highly precise models. Support vector machines and neuronal networks are formed by AI applications offering optimization solutions at different managing stages. In this paper, an implementation and comparison of the results obtained by two AI methods on a solid waste management problem is shown. Support vector machine (SVM) and long short-term memory (LSTM) network techniques have been used. The implementation of LSTM took into account different configurations, temporal filtering and annual calculations of solid waste collection periods. Results show that the SVM method properly fits selected data and yields consistent regression curves, even with very limited training data, leading to more accurate results than those obtained by the LSTM method.
开发支持城市固体废物(MSW)管理流程决策的方法对于市政当局具有重要意义。人工智能(AI)技术为设计算法提供了多种工具,可客观地分析数据并创建高度精确的模型。支持向量机和神经元网络是由 AI 应用程序形成的,可为不同的管理阶段提供优化解决方案。本文展示了在固体废物管理问题上,两种 AI 方法的实现和结果比较。使用了支持向量机(SVM)和长短期记忆(LSTM)网络技术。LSTM 的实现考虑了不同的配置,时间过滤和固体废物收集期的年度计算。结果表明,SVM 方法适当地拟合了所选数据,并产生了一致的回归曲线,即使训练数据非常有限,也能得出比 LSTM 方法更准确的结果。