Suppr超能文献

Rac-GAPα2-嵌合蛋白调节海马体树突和棘突的形态发生。

The Rac-GAP alpha2-chimaerin regulates hippocampal dendrite and spine morphogenesis.

作者信息

Valdez Chris M, Murphy Geoffrey G, Beg Asim A

机构信息

Interdepartmental Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, United States.

Interdepartmental Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, United States; Molecular and Behavioral Neuroscience Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, United States.

出版信息

Mol Cell Neurosci. 2016 Sep;75:14-26. doi: 10.1016/j.mcn.2016.06.002. Epub 2016 Jun 11.

Abstract

Dendritic spines are fine neuronal processes where spatially restricted input can induce activity-dependent changes in one spine, while leaving neighboring spines unmodified. Morphological spine plasticity is critical for synaptic transmission and is thought to underlie processes like learning and memory. Significantly, defects in dendritic spine stability and morphology are common pathogenic features found in several neurodevelopmental and neuropsychiatric disorders. The remodeling of spines relies on proteins that modulate the underlying cytoskeleton, which is primarily composed of filamentous (F)-actin. The Rho-GTPase Rac1 is a major regulator of F-actin and is essential for the development and plasticity of dendrites and spines. However, the key molecules and mechanisms that regulate Rac1-dependent pathways at spines and synapses are not well understood. We have identified the Rac1-GTPase activating protein, α2-chimaerin, as a critical negative regulator of Rac1 in hippocampal neurons. The loss of α2-chimaerin significantly increases the levels of active Rac1 and induces the formation of aberrant polymorphic dendritic spines. Further, disruption of α2-chimaerin signaling simplifies dendritic arbor complexity and increases the presence of dendritic spines that appear poly-innervated. Our data suggests that α2-chimaerin serves as a "brake" to constrain Rac1-dependent signaling to ensure that the mature morphology of spines is maintained in response to network activity.

摘要

树突棘是精细的神经元突起,在其中空间受限的输入可诱导单个棘突发生活性依赖的变化,而相邻棘突则保持不变。棘突的形态可塑性对于突触传递至关重要,并且被认为是学习和记忆等过程的基础。值得注意的是,树突棘稳定性和形态的缺陷是在几种神经发育和神经精神疾病中常见的致病特征。棘突的重塑依赖于调节潜在细胞骨架的蛋白质,细胞骨架主要由丝状(F)-肌动蛋白组成。Rho-GTP酶Rac1是F-肌动蛋白的主要调节因子,对于树突和棘突的发育及可塑性至关重要。然而,在棘突和突触处调节Rac1依赖性途径的关键分子和机制尚未完全了解。我们已确定Rac1-GTP酶激活蛋白α2-嵌合蛋白是海马神经元中Rac1的关键负调节因子。α2-嵌合蛋白的缺失显著增加了活性Rac1的水平,并诱导异常多形性树突棘的形成。此外,α2-嵌合蛋白信号的破坏简化了树突分支的复杂性,并增加了出现多神经支配的树突棘的数量。我们的数据表明,α2-嵌合蛋白作为一种“刹车”来限制Rac1依赖性信号传导,以确保在响应网络活动时维持棘突的成熟形态。

相似文献

4
The diacylglycerol-binding protein alpha1-chimaerin regulates dendritic morphology.二酰基甘油结合蛋白α1-嵌合蛋白调节树突形态。
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1924-9. doi: 10.1073/pnas.0510655103. Epub 2006 Jan 30.

引用本文的文献

1
Rho Signaling in Synaptic Plasticity, Memory, and Brain Disorders.Rho信号传导在突触可塑性、记忆及脑部疾病中的作用
Front Cell Dev Biol. 2021 Oct 4;9:729076. doi: 10.3389/fcell.2021.729076. eCollection 2021.

本文引用的文献

2
Mechanisms for spatiotemporal regulation of Rho-GTPase signaling at synapses.突触处Rho-GTPase信号时空调节的机制。
Neurosci Lett. 2015 Aug 5;601:4-10. doi: 10.1016/j.neulet.2015.05.034. Epub 2015 May 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验