Suppr超能文献

Rho GTP酶互补作用是脑源性神经营养因子依赖的同突触和异突触可塑性的基础。

Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity.

作者信息

Hedrick Nathan G, Harward Stephen C, Hall Charles E, Murakoshi Hideji, McNamara James O, Yasuda Ryohei

机构信息

Neurobiology Department, Duke University Medical Center, Research Drive, Durham, North Carolina 27710, USA.

National Institute for Physiological Science, Myodaiji, Okazaki, Aichi, 444-8585, Japan.

出版信息

Nature. 2016 Oct 6;538(7623):104-108. doi: 10.1038/nature19784. Epub 2016 Sep 28.

Abstract

The Rho GTPase proteins Rac1, RhoA and Cdc42 have a central role in regulating the actin cytoskeleton in dendritic spines, thereby exerting control over the structural and functional plasticity of spines and, ultimately, learning and memory. Although previous work has shown that precise spatiotemporal coordination of these GTPases is crucial for some forms of cell morphogenesis, the nature of such coordination during structural spine plasticity is unclear. Here we describe a three-molecule model of structural long-term potentiation (sLTP) of murine dendritic spines, implicating the localized, coincident activation of Rac1, RhoA and Cdc42 as a causal signal of sLTP. This model posits that complete tripartite signal overlap in spines confers sLTP, but that partial overlap primes spines for structural plasticity. By monitoring the spatiotemporal activation patterns of these GTPases during sLTP, we find that such spatiotemporal signal complementation simultaneously explains three integral features of plasticity: the facilitation of plasticity by brain-derived neurotrophic factor (BDNF), the postsynaptic source of which activates Cdc42 and Rac1, but not RhoA; heterosynaptic facilitation of sLTP, which is conveyed by diffusive Rac1 and RhoA activity; and input specificity, which is afforded by spine-restricted Cdc42 activity. Thus, we present a form of biochemical computation in dendrites involving the controlled complementation of three molecules that simultaneously ensures signal specificity and primes the system for plasticity.

摘要

Rho GTPase蛋白Rac1、RhoA和Cdc42在调节树突棘中的肌动蛋白细胞骨架方面发挥着核心作用,从而对树突棘的结构和功能可塑性以及最终的学习和记忆施加控制。尽管先前的研究表明,这些GTP酶的精确时空协调对于某些形式的细胞形态发生至关重要,但在结构棘突可塑性过程中这种协调的本质尚不清楚。在这里,我们描述了小鼠树突棘结构长时程增强(sLTP)的三分子模型,认为Rac1、RhoA和Cdc42的局部同时激活是sLTP的因果信号。该模型假定,树突棘中完全的三方信号重叠赋予sLTP,但部分重叠使树突棘具备结构可塑性。通过监测sLTP期间这些GTP酶的时空激活模式,我们发现这种时空信号互补同时解释了可塑性的三个不可或缺的特征:脑源性神经营养因子(BDNF)对可塑性的促进作用,其突触后来源激活Cdc42和Rac1,但不激活RhoA;sLTP的异突触促进作用,由扩散的Rac1和RhoA活性介导;以及输入特异性,由树突棘限制的Cdc42活性提供。因此,我们提出了一种树突中的生化计算形式,涉及三个分子的受控互补,同时确保信号特异性并使系统具备可塑性。

相似文献

6
Rho GTPases in embryonic development.胚胎发育中的Rho GTP酶
Small GTPases. 2014;5(2):8. doi: 10.4161/sgtp.29716.

引用本文的文献

本文引用的文献

8
Coordination of Rho GTPase activities during cell protrusion.细胞突起过程中Rho GTP酶活性的协调。
Nature. 2009 Sep 3;461(7260):99-103. doi: 10.1038/nature08242. Epub 2009 Aug 19.
9
Subcellular dynamics of type II PKA in neurons.神经元中II型蛋白激酶A的亚细胞动力学
Neuron. 2009 May 14;62(3):363-74. doi: 10.1016/j.neuron.2009.03.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验