Suppr超能文献

δ-COP在其对COPI动态和功能至关重要的longin结构域的C末端含有一个螺旋。

δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function.

作者信息

Arakel Eric C, Richter Kora P, Clancy Anne, Schwappach Blanche

机构信息

Department of Molecular Biology, Universitätsmedizin Göttingen, 37073 Goettingen, Germany;

Department of Molecular Biology, Universitätsmedizin Göttingen, 37073 Goettingen, Germany; Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany

出版信息

Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6916-21. doi: 10.1073/pnas.1603544113. Epub 2016 Jun 13.

Abstract

Membrane recruitment of coatomer and formation of coat protein I (COPI)-coated vesicles is crucial to homeostasis in the early secretory pathway. The conformational dynamics of COPI during cargo capture and vesicle formation is incompletely understood. By scanning the length of δ-COP via functional complementation in yeast, we dissect the domains of the δ-COP subunit. We show that the μ-homology domain is dispensable for COPI function in the early secretory pathway, whereas the N-terminal longin domain is essential. We map a previously uncharacterized helix, C-terminal to the longin domain, that is specifically required for the retrieval of HDEL-bearing endoplasmic reticulum-luminal residents. It is positionally analogous to an unstructured linker that becomes helical and membrane-facing in the open form of the AP2 clathrin adaptor complex. Based on the amphipathic nature of the critical helix it may probe the membrane for lipid packing defects or mediate interaction with cargo and thus contribute to stabilizing membrane-associated coatomer.

摘要

外套膜蛋白复合物的膜募集及衣被蛋白I(COPI)包被囊泡的形成对于早期分泌途径的稳态至关重要。目前对于COPI在货物捕获和囊泡形成过程中的构象动力学还不完全清楚。通过在酵母中进行功能互补扫描δ-COP的长度,我们剖析了δ-COP亚基的结构域。我们发现,μ-同源结构域对于早期分泌途径中COPI的功能是可有可无的,而N端的长链结构域是必不可少的。我们绘制了一个位于长链结构域C端的先前未表征的螺旋结构,它是回收带有HDEL的内质网腔驻留蛋白所特需的。它在位置上类似于AP2网格蛋白衔接复合物开放形式中变成螺旋状并面向膜的无结构连接子。基于关键螺旋的两亲性,它可能探测膜上的脂质堆积缺陷或介导与货物的相互作用,从而有助于稳定与膜相关的外套膜蛋白复合物。

相似文献

1
δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function.
Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6916-21. doi: 10.1073/pnas.1603544113. Epub 2016 Jun 13.
2
Structural basis for the binding of tryptophan-based motifs by δ-COP.
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14242-7. doi: 10.1073/pnas.1506186112. Epub 2015 Nov 2.
3
Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats.
Cell. 2010 Jul 9;142(1):123-32. doi: 10.1016/j.cell.2010.05.030. Epub 2010 Jun 24.
4
Coatomer, the coat protein of COPI transport vesicles, discriminates endoplasmic reticulum residents from p24 proteins.
Mol Cell Biol. 2006 Nov;26(21):8011-21. doi: 10.1128/MCB.01055-06. Epub 2006 Aug 28.
6
The structure of COPI vesicles and regulation of vesicle turnover.
FEBS Lett. 2023 Mar;597(6):819-835. doi: 10.1002/1873-3468.14560. Epub 2022 Dec 30.
7
Functional reconstitution of COPI coat assembly and disassembly using chemically defined components.
Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8253-7. doi: 10.1073/pnas.1432391100. Epub 2003 Jun 27.
8
Auxilin facilitates membrane traffic in the early secretory pathway.
Mol Biol Cell. 2016 Jan 1;27(1):127-36. doi: 10.1091/mbc.E15-09-0631. Epub 2015 Nov 4.
9
Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP.
Traffic. 2007 May;8(5):582-93. doi: 10.1111/j.1600-0854.2007.00554.x.
10

引用本文的文献

1
Identification of a Fetal De Novo Splice Variant in  Associated With Growth and Skeletal Abnormalities.
Matern Fetal Med. 2025 Jan;7(1):9-14. doi: 10.1097/FM9.0000000000000263. Epub 2024 Dec 17.
2
From guide to guard-activation mechanism of the stress-sensing chaperone Get3.
Mol Cell. 2022 Sep 1;82(17):3226-3238.e7. doi: 10.1016/j.molcel.2022.06.015. Epub 2022 Jul 14.
3
Roles of singleton tryptophan motifs in COPI coat stability and vesicle tethering.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24031-24040. doi: 10.1073/pnas.1909697116. Epub 2019 Nov 11.
5
The structure of the COPI coat determined within the cell.
Elife. 2017 Nov 17;6:e32493. doi: 10.7554/eLife.32493.

本文引用的文献

1
Structural basis for the binding of tryptophan-based motifs by δ-COP.
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14242-7. doi: 10.1073/pnas.1506186112. Epub 2015 Nov 2.
3
Structure of the bovine COPI δ subunit μ homology domain at 2.15 Å resolution.
Acta Crystallogr D Biol Crystallogr. 2015 Jun;71(Pt 6):1328-34. doi: 10.1107/S1399004715006203. Epub 2015 May 14.
4
JPred4: a protein secondary structure prediction server.
Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94. doi: 10.1093/nar/gkv332. Epub 2015 Apr 16.
5
Characterization of TSET, an ancient and widespread membrane trafficking complex.
Elife. 2014 May 27;3:e02866. doi: 10.7554/eLife.02866.
6
Longin and GAF domains: structural evolution and adaptation to the subcellular trafficking machinery.
Traffic. 2014 Jan;15(1):104-21. doi: 10.1111/tra.12124. Epub 2013 Nov 11.
7
Rules for the recognition of dilysine retrieval motifs by coatomer.
EMBO J. 2013 Apr 3;32(7):926-37. doi: 10.1038/emboj.2013.41. Epub 2013 Mar 12.
8
Molecular basis for recognition of dilysine trafficking motifs by COPI.
Dev Cell. 2012 Dec 11;23(6):1255-62. doi: 10.1016/j.devcel.2012.10.017. Epub 2012 Nov 21.
10
A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes.
Cell. 2012 Feb 3;148(3):530-42. doi: 10.1016/j.cell.2012.01.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验