Morris Richard V, Vaniman David T, Blake David F, Gellert Ralf, Chipera Steve J, Rampe Elizabeth B, Ming Douglas W, Morrison Shaunna M, Downs Robert T, Treiman Allan H, Yen Albert S, Grotzinger John P, Achilles Cherie N, Bristow Thomas F, Crisp Joy A, Des Marais David J, Farmer Jack D, Fendrich Kim V, Frydenvang Jens, Graff Trevor G, Morookian John-Michael, Stolper Edward M, Schwenzer Susanne P
NASA Johnson Space Center, Houston, TX 77058;
Planetary Science Institute, Tucson, AZ 85719;
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7071-6. doi: 10.1073/pnas.1607098113. Epub 2016 Jun 13.
Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a "Lake Gale" catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.
鳞石英是一种低压、高温(>870℃)的二氧化硅多晶型物,火星科学实验室的好奇号漫游车搭载的化学与矿物学X射线衍射仪在火星盖尔陨石坑马利亚斯山口的层状泥岩(鹿皮泥岩)钻孔样本中检测到了它。含鳞石英的泥岩含有约40重量%的晶体和约60重量%的X射线非晶质物质,其总体成分含有约74重量%的二氧化硅(α粒子X射线光谱仪分析结果)。斜长石(约占总体样本的17重量%)、鳞石英(约14重量%)、透长石(约3重量%)、阳离子缺乏的磁铁矿(约3重量%)、方石英(约2重量%)和硬石膏(约1重量%)是泥岩中的晶体矿物。非晶质物质富含二氧化硅(约39重量%的蛋白石-A和/或高二氧化硅玻璃以及蛋白石-CT)、含有挥发物(16重量%的混合阳离子硫酸盐、磷酸盐以及氯化物-高氯酸盐-氯酸盐),并含有少量的二氧化钛和三氧化二铁(约5重量%)。里特韦尔德精修得出了一种结晶良好的鳞石英的单斜结构模型,这与较高的形成温度一致。地球上的鳞石英通常与硅质火山活动有关,在“盖尔湖”集水区环境中,此类火山活动产生的碎屑可以解释鹿皮泥岩中的鳞石英、方石英、长石以及任何残留的高二氧化硅玻璃的来源。这些共生碎屑相可能源自盖尔陨石坑的坑壁/边缘/中央峰。成岩过程中,高二氧化硅玻璃可能会形成蛋白石二氧化硅,成为无定形沉淀二氧化硅,或者成为沉积物源区或马利亚斯山口酸性淋滤的残余物。非晶质混合阳离子盐和氧化物以及可能的结晶磁铁矿(否则为碎屑)是主要沉淀物和/或它们的成岩产物,源自成分、温度和酸度各异的水溶液的多次渗透。硬石膏是成岩后裂缝/脉体的填充物。