Chinnadurai Raghavan, Copland Ian B, Garcia Marco A, Petersen Christopher T, Lewis Christopher N, Waller Edmund K, Kirk Allan D, Galipeau Jacques
Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.
Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.
Stem Cells. 2016 Sep;34(9):2429-42. doi: 10.1002/stem.2415. Epub 2016 Jul 4.
We have previously demonstrated that cryopreservation and thawing lead to altered Mesenchymal stromal cells (MSC) functionalities. Here, we further analyzed MSC's fitness post freeze-thaw. We have observed that thawed MSC can suppress T-cell proliferation when separated from them by transwell membrane and the effect is lost in a MSC:T-cell coculture system. Unlike actively growing MSCs, thawed MSCs were lysed upon coculture with activated autologous Peripheral Blood Mononuclear Cells (PBMCs) and the lysing effect was further enhanced with allogeneic PBMCs. The use of DMSO-free cryoprotectants or substitution of Human Serum Albumin (HSA) with human platelet lysate in freezing media and use of autophagy or caspase inhibitors did not prevent thaw defects. We tested the hypothesis that IFNγ prelicensing before cryobanking can enhance MSC fitness post thaw. Post thawing, IFNγ licensed MSCs inhibit T cell proliferation as well as fresh MSCs and this effect can be blocked by 1-methyl Tryptophan, an Indoleamine 2,3-dioxygenase (IDO) inhibitor. In addition, IFNγ prelicensed thawed MSCs inhibit the degranulation of cytotoxic T cells while IFNγ unlicensed thawed MSCs failed to do so. However, IFNγ prelicensed thawed MSCs do not deploy lung tropism in vivo following intravenous injection as well as fresh MSCs suggesting that IFNγ prelicensing does not fully rescue thaw-induced lung homing defect. We identified reversible and irreversible cryoinjury mechanisms that result in susceptibility to host T-cell cytolysis and affect MSC's cell survival and tissue distribution. The susceptibility of MSC to negative effects of cryopreservation and the potential to mitigate the effects with IFNγ prelicensing may inform strategies to enhance the therapeutic efficacy of MSC in clinical use. Stem Cells 2016;34:2429-2442.
我们之前已经证明,冷冻保存和解冻会导致间充质基质细胞(MSC)功能改变。在此,我们进一步分析了冻融后MSC的适应性。我们观察到,解冻后的MSC通过Transwell膜与T细胞分离时可抑制T细胞增殖,而在MSC与T细胞共培养系统中这种作用会消失。与活跃生长的MSC不同,解冻后的MSC与活化的自体外周血单个核细胞(PBMC)共培养时会发生裂解,而异基因PBMC会进一步增强这种裂解作用。在冷冻培养基中使用无二甲亚砜(DMSO)的冷冻保护剂或用人血小板裂解物替代人血清白蛋白(HSA),以及使用自噬或半胱天冬酶抑制剂均不能预防解冻缺陷。我们测试了如下假设:冻存前用γ干扰素(IFNγ)进行预处理可以提高解冻后MSC的适应性。解冻后,经IFNγ预处理的MSC与新鲜MSC一样能抑制T细胞增殖,且这种作用可被吲哚胺2,3-双加氧酶(IDO)抑制剂1-甲基色氨酸阻断。此外,经IFNγ预处理的解冻后MSC可抑制细胞毒性T细胞的脱颗粒,而未经IFNγ预处理的解冻后MSC则不能。然而,经IFNγ预处理的解冻后MSC静脉注射后在体内并不像新鲜MSC那样表现出肺归巢倾向,这表明IFNγ预处理并不能完全挽救解冻诱导的肺归巢缺陷。我们确定了导致对宿主T细胞细胞溶解敏感并影响MSC细胞存活和组织分布的可逆和不可逆冷冻损伤机制。MSC对冷冻保存负面影响的易感性以及IFNγ预处理减轻这些影响的潜力,可能为提高MSC临床治疗效果的策略提供依据。《干细胞》2016年;34卷:2429 - 2442页