Suppr超能文献

传染病实时预测面临的挑战:以泰国登革热为例的研究

Challenges in Real-Time Prediction of Infectious Disease: A Case Study of Dengue in Thailand.

作者信息

Reich Nicholas G, Lauer Stephen A, Sakrejda Krzysztof, Iamsirithaworn Sopon, Hinjoy Soawapak, Suangtho Paphanij, Suthachana Suthanun, Clapham Hannah E, Salje Henrik, Cummings Derek A T, Lessler Justin

机构信息

Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts, United States of America.

Department of Disease Control, Ministry of Public Health, Bangkok, Thailand.

出版信息

PLoS Negl Trop Dis. 2016 Jun 15;10(6):e0004761. doi: 10.1371/journal.pntd.0004761. eCollection 2016 Jun.

Abstract

Epidemics of communicable diseases place a huge burden on public health infrastructures across the world. Producing accurate and actionable forecasts of infectious disease incidence at short and long time scales will improve public health response to outbreaks. However, scientists and public health officials face many obstacles in trying to create such real-time forecasts of infectious disease incidence. Dengue is a mosquito-borne virus that annually infects over 400 million people worldwide. We developed a real-time forecasting model for dengue hemorrhagic fever in the 77 provinces of Thailand. We created a practical computational infrastructure that generated multi-step predictions of dengue incidence in Thai provinces every two weeks throughout 2014. These predictions show mixed performance across provinces, out-performing seasonal baseline models in over half of provinces at a 1.5 month horizon. Additionally, to assess the degree to which delays in case reporting make long-range prediction a challenging task, we compared the performance of our real-time predictions with predictions made with fully reported data. This paper provides valuable lessons for the implementation of real-time predictions in the context of public health decision making.

摘要

传染病的流行给全球公共卫生基础设施带来了巨大负担。在短期和长期尺度上生成准确且可付诸行动的传染病发病率预测,将改善对疫情的公共卫生应对。然而,科学家和公共卫生官员在尝试创建此类传染病发病率实时预测时面临诸多障碍。登革热是一种通过蚊子传播的病毒,全球每年有超过4亿人感染。我们为泰国的77个省份开发了登革出血热实时预测模型。我们创建了一个实用的计算基础设施,在2014年全年每两周生成泰国各省份登革热发病率的多步预测。这些预测在各省份的表现参差不齐,在1.5个月的预测期内,超过半数省份的预测表现优于季节性基线模型。此外,为了评估病例报告延迟对长期预测造成挑战的程度,我们将实时预测的表现与使用完整报告数据得出的预测进行了比较。本文为在公共卫生决策背景下实施实时预测提供了宝贵经验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb29/4909288/0573ca24ca1d/pntd.0004761.g001.jpg

相似文献

1
Challenges in Real-Time Prediction of Infectious Disease: A Case Study of Dengue in Thailand.
PLoS Negl Trop Dis. 2016 Jun 15;10(6):e0004761. doi: 10.1371/journal.pntd.0004761. eCollection 2016 Jun.
2
Incorporating human mobility data improves forecasts of Dengue fever in Thailand.
Sci Rep. 2021 Jan 13;11(1):923. doi: 10.1038/s41598-020-79438-0.
3
Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles.
PLoS Med. 2021 Mar 4;18(3):e1003542. doi: 10.1371/journal.pmed.1003542. eCollection 2021 Mar.
4
Prospective forecasts of annual dengue hemorrhagic fever incidence in Thailand, 2010-2014.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2175-E2182. doi: 10.1073/pnas.1714457115. Epub 2018 Feb 20.
5
Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore.
Environ Health Perspect. 2016 Sep;124(9):1369-75. doi: 10.1289/ehp.1509981. Epub 2015 Dec 11.
6
Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data.
PLoS Comput Biol. 2019 Nov 21;15(11):e1007518. doi: 10.1371/journal.pcbi.1007518. eCollection 2019 Nov.
9
The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014.
PLoS One. 2019 Dec 26;14(12):e0226945. doi: 10.1371/journal.pone.0226945. eCollection 2019.
10
An open challenge to advance probabilistic forecasting for dengue epidemics.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24268-24274. doi: 10.1073/pnas.1909865116. Epub 2019 Nov 11.

引用本文的文献

1
Perspectives and challenges in developing and implementing integrated dengue surveillance tools and technology in Thailand: a qualitative study.
PLoS Negl Trop Dis. 2024 Aug 14;18(8):e0012387. doi: 10.1371/journal.pntd.0012387. eCollection 2024 Aug.
2
An inaugural forum on epidemiological modeling for public health stakeholders in Arizona.
Front Public Health. 2024 May 31;12:1357908. doi: 10.3389/fpubh.2024.1357908. eCollection 2024.
4
The IHI Rochester Report 2022 on Healthcare Informatics Research: Resuming After the CoViD-19.
J Healthc Inform Res. 2023 May 1;7(2):169-202. doi: 10.1007/s41666-023-00126-5. eCollection 2023 Jun.
5
Correction: Challenges in Real-Time Prediction of Infectious Disease: A Case Study of Dengue in Thailand.
PLoS Negl Trop Dis. 2022 Oct 26;16(10):e0010883. doi: 10.1371/journal.pntd.0010883. eCollection 2022 Oct.
6
The potential of genomics for infectious disease forecasting.
Nat Microbiol. 2022 Nov;7(11):1736-1743. doi: 10.1038/s41564-022-01233-6. Epub 2022 Oct 20.
7
Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States.
Int J Forecast. 2023 Jul-Sep;39(3):1366-1383. doi: 10.1016/j.ijforecast.2022.06.005. Epub 2022 Jul 1.
8
Deep learning models for forecasting dengue fever based on climate data in Vietnam.
PLoS Negl Trop Dis. 2022 Jun 13;16(6):e0010509. doi: 10.1371/journal.pntd.0010509. eCollection 2022 Jun.
9
A nowcasting framework for correcting for reporting delays in malaria surveillance.
PLoS Comput Biol. 2021 Nov 16;17(11):e1009570. doi: 10.1371/journal.pcbi.1009570. eCollection 2021 Nov.
10
Bayesian back-calculation and nowcasting for line list data during the COVID-19 pandemic.
PLoS Comput Biol. 2021 Jul 12;17(7):e1009210. doi: 10.1371/journal.pcbi.1009210. eCollection 2021 Jul.

本文引用的文献

1
Case study in evaluating time series prediction models using the relative mean absolute error.
Am Stat. 2016;70(3):285-292. doi: 10.1080/00031305.2016.1148631. Epub 2016 Aug 10.
2
Epidemiological trends of dengue disease in Thailand (2000-2011): a systematic literature review.
PLoS Negl Trop Dis. 2014 Nov 6;8(11):e3241. doi: 10.1371/journal.pntd.0003241. eCollection 2014.
3
Real-time influenza forecasts during the 2012-2013 season.
Nat Commun. 2013;4:2837. doi: 10.1038/ncomms3837.
4
The global distribution and burden of dengue.
Nature. 2013 Apr 25;496(7446):504-7. doi: 10.1038/nature12060. Epub 2013 Apr 7.
6
Prospective cohort studies of dengue viral transmission and severity of disease.
Curr Top Microbiol Immunol. 2010;338:1-13. doi: 10.1007/978-3-642-02215-9_1.
7
The ideal reporting interval for an epidemic to objectively interpret the epidemiological time course.
J R Soc Interface. 2010 Feb 6;7(43):297-307. doi: 10.1098/rsif.2009.0153. Epub 2009 Jul 1.
8
Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand.
PLoS Med. 2005 Apr;2(4):e106. doi: 10.1371/journal.pmed.0020106. Epub 2005 Apr 26.
9
Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand.
Nature. 2004 Jan 22;427(6972):344-7. doi: 10.1038/nature02225.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验