Suppr超能文献

基于越南气候数据的登革热预测深度学习模型。

Deep learning models for forecasting dengue fever based on climate data in Vietnam.

机构信息

Hungyen University of Technology and Education, Hungyen, Vietnam.

Hanoi University of Public Health, Hanoi, Vietnam.

出版信息

PLoS Negl Trop Dis. 2022 Jun 13;16(6):e0010509. doi: 10.1371/journal.pntd.0010509. eCollection 2022 Jun.

Abstract

BACKGROUND

Dengue fever (DF) represents a significant health burden in Vietnam, which is forecast to worsen under climate change. The development of an early-warning system for DF has been selected as a prioritised health adaptation measure to climate change in Vietnam.

OBJECTIVE

This study aimed to develop an accurate DF prediction model in Vietnam using a wide range of meteorological factors as inputs to inform public health responses for outbreak prevention in the context of future climate change.

METHODS

Convolutional neural network (CNN), Transformer, long short-term memory (LSTM), and attention-enhanced LSTM (LSTM-ATT) models were compared with traditional machine learning models on weather-based DF forecasting. Models were developed using lagged DF incidence and meteorological variables (measures of temperature, humidity, rainfall, evaporation, and sunshine hours) as inputs for 20 provinces throughout Vietnam. Data from 1997-2013 were used to train models, which were then evaluated using data from 2014-2016 by Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).

RESULTS AND DISCUSSION

LSTM-ATT displayed the highest performance, scoring average places of 1.60 for RMSE-based ranking and 1.95 for MAE-based ranking. Notably, it was able to forecast DF incidence better than LSTM in 13 or 14 out of 20 provinces for MAE or RMSE, respectively. Moreover, LSTM-ATT was able to accurately predict DF incidence and outbreak months up to 3 months ahead, though performance dropped slightly compared to short-term forecasts. To the best of our knowledge, this is the first time deep learning methods have been employed for the prediction of both long- and short-term DF incidence and outbreaks in Vietnam using unique, rich meteorological features.

CONCLUSION

This study demonstrates the usefulness of deep learning models for meteorological factor-based DF forecasting. LSTM-ATT should be further explored for mitigation strategies against DF and other climate-sensitive diseases in the coming years.

摘要

背景

登革热(DF)在越南造成了重大的健康负担,预计在气候变化下情况会恶化。开发登革热预警系统已被选为越南适应气候变化的优先卫生措施。

目的

本研究旨在利用广泛的气象因素作为输入,开发一种准确的越南登革热预测模型,以便在未来气候变化背景下为爆发预防提供公共卫生应对措施。

方法

卷积神经网络(CNN)、Transformer、长短期记忆(LSTM)和注意力增强 LSTM(LSTM-ATT)模型在基于天气的登革热预测方面与传统机器学习模型进行了比较。使用滞后的登革热发病率和气象变量(温度、湿度、降雨量、蒸发量和日照小时数的测量值)作为输入,为越南 20 个省份开发了模型。使用 1997-2013 年的数据来训练模型,然后使用 2014-2016 年的数据通过均方根误差(RMSE)和平均绝对误差(MAE)来评估模型。

结果和讨论

LSTM-ATT 的表现最高,在基于 RMSE 的排名中平均排名第 1.60 位,在基于 MAE 的排名中平均排名第 1.95 位。值得注意的是,在 MAE 或 RMSE 方面,它能够在 13 个或 14 个省份中的 13 个或 14 个省份中比 LSTM 更好地预测登革热发病率。此外,LSTM-ATT 能够准确预测登革热发病率和爆发月份,提前 3 个月,但与短期预测相比,性能略有下降。据我们所知,这是首次使用深度学习方法来预测越南的长短期登革热发病率和爆发情况,并利用独特的、丰富的气象特征。

结论

本研究表明深度学习模型在基于气象因素的登革热预测方面具有实用性。在未来几年,LSTM-ATT 应进一步探索用于登革热和其他气候敏感疾病的缓解策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/9232166/a509b384adfc/pntd.0010509.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验