Suppr超能文献

泰国 2010-2014 年登革出血热年发病率的前瞻性预测。

Prospective forecasts of annual dengue hemorrhagic fever incidence in Thailand, 2010-2014.

机构信息

Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003;

Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003.

出版信息

Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2175-E2182. doi: 10.1073/pnas.1714457115. Epub 2018 Feb 20.

Abstract

Dengue hemorrhagic fever (DHF), a severe manifestation of dengue viral infection that can cause severe bleeding, organ impairment, and even death, affects between 15,000 and 105,000 people each year in Thailand. While all Thai provinces experience at least one DHF case most years, the distribution of cases shifts regionally from year to year. Accurately forecasting where DHF outbreaks occur before the dengue season could help public health officials prioritize public health activities. We develop statistical models that use biologically plausible covariates, observed by April each year, to forecast the cumulative DHF incidence for the remainder of the year. We perform cross-validation during the training phase (2000-2009) to select the covariates for these models. A parsimonious model based on preseason incidence outperforms the 10-y median for 65% of province-level annual forecasts, reduces the mean absolute error by 19%, and successfully forecasts outbreaks (area under the receiver operating characteristic curve = 0.84) over the testing period (2010-2014). We find that functions of past incidence contribute most strongly to model performance, whereas the importance of environmental covariates varies regionally. This work illustrates that accurate forecasts of dengue risk are possible in a policy-relevant timeframe.

摘要

登革出血热(DHF)是一种严重的登革病毒感染表现,可导致严重出血、器官损伤,甚至死亡,每年在泰国影响 15000 至 105000 人。虽然所有泰国省份每年至少都会出现一例 DHF 病例,但病例的分布会从一年到另一年在地区间转移。在登革热季节前准确预测 DHF 爆发的地点,可以帮助公共卫生官员优先开展公共卫生活动。我们开发了统计模型,这些模型使用每年 4 月之前观察到的生物学合理的协变量来预测当年剩余时间的累积 DHF 发病率。我们在训练阶段(2000-2009 年)进行交叉验证,以选择这些模型的协变量。基于 preseason 发病率的简约模型在 65%的省级年度预测中表现优于 10 年中位数,平均绝对误差降低了 19%,并在测试期(2010-2014 年)成功预测了疫情(接收者操作特征曲线下的面积=0.84)。我们发现,过去发病率的函数对模型性能的贡献最大,而环境协变量的重要性在地区间有所不同。这项工作表明,在相关政策时间范围内,登革热风险的准确预测是可能的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9546/5877997/4eeaa5a95e8f/pnas.1714457115fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验