文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用吲哚菁绿封装的聚合物纳米复合材料工程用于生物医学应用。

Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications.

作者信息

Han Ya-Hui, Kankala Ranjith Kumar, Wang Shi-Bin, Chen Ai-Zheng

机构信息

Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.

College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.

出版信息

Nanomaterials (Basel). 2018 May 24;8(6):360. doi: 10.3390/nano8060360.


DOI:10.3390/nano8060360
PMID:29882932
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6027497/
Abstract

In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.

摘要

近年来,光诱导疗法因其具有优先定位、优异的组织穿透性、高治疗效果和微创性等吸引人的特性而引起了研究人员的极大兴趣。为了在治疗方面取得重大进展,人们考虑了众多光敏剂与光的结合。在此方面,吲哚菁绿(ICG)是一种经美国食品药品监督管理局(FDA)批准的近红外(NIR,>750 nm)荧光染料,因其具有吸引人的物理化学性质、高灵敏度和更好的成像视野,已被用于各种生物医学应用,如药物递送、成像和诊断。然而,ICG在体内作为分子成像探针的应用仍存在一定局限性,例如浓度依赖性聚集、体外水稳定性差以及由于各种物理化学特性导致的光降解。为克服这些局限性,许多研究致力于设计多种多功能聚合物复合材料用于潜在的生物医学应用。在本综述中,我们旨在讨论包封ICG的聚合物纳米结构,它们在各种生物医学应用中具有特别的意义。首先,我们强调ICG的一些吸引人的特性(包括物理化学特征、光学性质、代谢特性等方面)及其当前的一些局限性。接下来,我们旨在通过一系列实例全面概述有关各种负载ICG用于光诱导治疗的聚合物纳米颗粒的最新报道。最后,我们总结观点,突出这些纳米复合材料的重大成果和当前面临的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/d2b23351fce4/nanomaterials-08-00360-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/5f87bba8140c/nanomaterials-08-00360-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/78af7d99ee7c/nanomaterials-08-00360-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/007ea80e0196/nanomaterials-08-00360-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/afd6eaeb81b4/nanomaterials-08-00360-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/7b3f20ce5ac1/nanomaterials-08-00360-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/e2ad3a1b0213/nanomaterials-08-00360-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/2c1c2e035d7a/nanomaterials-08-00360-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/d2b23351fce4/nanomaterials-08-00360-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/5f87bba8140c/nanomaterials-08-00360-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/78af7d99ee7c/nanomaterials-08-00360-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/007ea80e0196/nanomaterials-08-00360-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/afd6eaeb81b4/nanomaterials-08-00360-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/7b3f20ce5ac1/nanomaterials-08-00360-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/e2ad3a1b0213/nanomaterials-08-00360-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/2c1c2e035d7a/nanomaterials-08-00360-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/6027497/d2b23351fce4/nanomaterials-08-00360-g008.jpg

相似文献

[1]
Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications.

Nanomaterials (Basel). 2018-5-24

[2]
Indocyanine Green Nanoparticles: Are They Compelling for Cancer Treatment?

Front Chem. 2020-7-16

[3]
Highly enhanced optical properties of indocyanine green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and magnetic resonance imaging.

Nano Converg. 2014

[4]
Applications of indocyanine green in brain tumor surgery: review of clinical evidence and emerging technologies.

Neurosurg Focus. 2021-1

[5]
Folic acid-indocyanine green-poly(d,l-lactide-coglycolide)-lipid nanoparticles

2004

[6]
Advances in Indocyanine Green-Based Codelivery Nanoplatforms for Combinatorial Therapy.

ACS Biomater Sci Eng. 2021-3-8

[7]
Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study.

Biomacromolecules. 2013-8-13

[8]
Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review.

Nanoscale Adv. 2021-4-15

[9]
Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging.

Small. 2012-6-29

[10]
Calcium-carbonate packaging magnetic polydopamine nanoparticles loaded with indocyanine green for near-infrared induced photothermal/photodynamic therapy.

Acta Biomater. 2018-9-27

引用本文的文献

[1]
Magnetic mesoporous silica nanoparticles as advanced polymeric scaffolds for efficient cancer chemotherapy: recent progress and challenges.

RSC Adv. 2025-5-14

[2]
Novel Drug Delivery Particles Can Provide Dual Effects on Cancer "Theranostics" in Boron Neutron Capture Therapy.

Cells. 2025-1-6

[3]
Photosensitizers-Loaded Nanocarriers for Enhancement of Photodynamic Therapy in Melanoma Treatment.

Pharmaceutics. 2023-8-11

[4]
Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules.

Molecules. 2023-8-16

[5]
Fluoridated Apatite Coating on Human Dentin via Laser-Assisted Pseudo-Biomineralization with the Aid of a Light-Absorbing Molecule.

Int J Mol Sci. 2022-12-15

[6]
Enhancing Photothermal Therapy Efficacy by Self-Assembly in Glioma.

ACS Appl Mater Interfaces. 2023-1-11

[7]
Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review.

Nanoscale Adv. 2021-4-15

[8]
Biocompatible Supramolecular Mesoporous Silica Nanoparticles as the Next-Generation Drug Delivery System.

Front Pharmacol. 2022-6-28

[9]
Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma.

Acta Pharm Sin B. 2022-6

[10]
Novel fluorescein polymer-based nanoparticles: facile and controllable one-pot synthesis, assembly, and immobilization of biomolecules for application in a highly sensitive biosensor.

RSC Adv. 2020-1-16

本文引用的文献

[1]
Correction: Indocyanine-green-loaded microbubbles for localization of sentinel lymph node using near-infrared fluorescence/ultrasound imaging: a feasibility study.

RSC Adv. 2023-8-14

[2]
Overcoming Multidrug Resistance through the Synergistic Effects of Hierarchical pH-Sensitive, ROS-Generating Nanoreactors.

ACS Biomater Sci Eng. 2017-10-9

[3]
Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics.

J Mater Chem B. 2017-2-21

[4]
Photothermally induced accumulation and retention of polymeric nanoparticles in tumors for long-term fluorescence imaging.

J Mater Chem B. 2017-4-7

[5]
Indocyanine green-platinum porphyrins integrated conjugated polymer hybrid nanoparticles for near-infrared-triggered photothermal and two-photon photodynamic therapy.

J Mater Chem B. 2017-3-7

[6]
Tellurium platinate nanowires for photothermal therapy of cancer cells.

J Mater Chem B. 2016-6-7

[7]
Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.

Proc Natl Acad Sci U S A. 2018-4-6

[8]
A Cascade-Targeting Nanocapsule for Enhanced Photothermal Tumor Therapy with Aid of Autophagy Inhibition.

Adv Healthc Mater. 2018-3-27

[9]
Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy.

Chem Sci. 2017-12-1

[10]
Indocyanine green-incorporating nanoparticles for cancer theranostics.

Theranostics. 2018-2-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索