Suppr超能文献

低钠血症独立于渗透压改变神经元细胞的生物物理特性:关于镍(2+)敏感性电流参与的研究。

Hyponatraemia alters the biophysical properties of neuronal cells independently of osmolarity: a study on Ni(2+) -sensitive current involvement.

作者信息

Squecco Roberta, Luciani Paola, Idrizaj Eglantina, Deledda Cristiana, Benvenuti Susanna, Giuliani Corinna, Fibbi Benedetta, Peri Alessandro, Francini Fabio

机构信息

Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134, Florence, Italy.

Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, 50134, Florence, Italy.

出版信息

Exp Physiol. 2016 Aug 1;101(8):1086-100. doi: 10.1113/EP085806.

Abstract

What is the central question of this study? Hyponatraemia, an electrolyte disorder encountered in hospitalized patients, can cause neurological symptoms usually attributed to a reduction in plasma osmolarity. Here, we investigated whether low [Na(+) ] per se can cause neuronal changes independent of osmolarity, focusing on involvement of the Na(+) -Ca(2+) exchanger. What is the main finding and its importance? We show that hyponatraemia per se causes alterations of neuronal properties. The novel finding of Na(+) -Ca(2+) exchanger involvement helps us to elucidate the volume regulation following hyponatraemia. This might have relevance in a translational perspective because Na(+) -Ca(2+) exchanger could be a target for novel therapies. Hyponatraemia is the most frequent electrolyte disorder encountered in hospitalized patients, and it can cause a wide variety of neurological symptoms. Most of the negative effects of this condition on neuronal cells are attributed to cell swelling because of the reduction of plasma osmolarity, although in hyponatraemia different membrane proteins are supposed to be involved in the conservation of neuronal volume. We have recently reported detrimental effects of hyponatraemia on two different neuronal cell lines, SK-N-AS and SH-SY5Y, independent of osmotic alterations. In this study we investigated, in the same cell lines, whether hyponatraemic conditions per se can cause electrophysiological alterations and whether these effects vary over time. Accordingly, we carried out experiments in low-sodium medium in either hyposmotic [Osm(-)] or isosmotic [Osm(+)] conditions, for a short (24 h) or long time (7 days). Using a patch pipette in voltage-clamp conditions, we recorded possible modifications of cell capacitance (Cm ) and membrane conductance (Gm ). Our results indicate that in both Osm(-) and Osm(+) medium, Cm and Gm show a similar increase, but such effects are dependent on the time in culture in different ways. Notably, regarding the possible mechanisms involved in the maintenance of Cm , Gm and Gm /Cm in Osm(+) conditions, we observed a greater contribution of the Na(+) -Ca(2+) exchanger compared with Osm(-) and control conditions. Overall, these novel electrophysiological results help us to understand the mechanisms of volume regulation after ionic perturbation. Our results might also have relevance in a translational perspective because the Na(+) -Ca(2+) exchanger can be considered a target for planning novel therapies.

摘要

本研究的核心问题是什么?低钠血症是住院患者中常见的一种电解质紊乱,可导致通常归因于血浆渗透压降低的神经症状。在此,我们研究了低[Na⁺]本身是否能独立于渗透压引起神经元变化,重点关注Na⁺-Ca²⁺交换体的作用。主要发现及其重要性是什么?我们表明低钠血症本身会导致神经元特性的改变。Na⁺-Ca²⁺交换体参与这一发现有助于我们阐明低钠血症后的体积调节。从转化医学角度来看,这可能具有相关性,因为Na⁺-Ca²⁺交换体可能成为新型治疗的靶点。低钠血症是住院患者中最常见的电解质紊乱,可导致多种神经症状。这种情况对神经元细胞的大多数负面影响归因于由于血浆渗透压降低导致的细胞肿胀,尽管在低钠血症中不同的膜蛋白被认为参与了神经元体积的维持。我们最近报道了低钠血症对两种不同神经元细胞系SK-N-AS和SH-SY5Y的有害影响,与渗透压改变无关。在本研究中,我们在相同的细胞系中研究了低钠血症状态本身是否会引起电生理改变以及这些影响是否随时间变化。因此,我们在低渗[Osm(-)]或等渗[Osm(+)]条件下的低钠培养基中进行了短期(24小时)或长期(7天)的实验。在电压钳制条件下使用膜片吸管,我们记录了细胞电容(Cm)和膜电导(Gm)的可能变化。我们的结果表明,在Osm(-)和Osm(+)培养基中,Cm和Gm均呈现类似的增加,但这些影响以不同方式依赖于培养时间。值得注意的是,关于在Osm(+)条件下维持Cm、Gm和Gm/Cm所涉及的可能机制,我们观察到与Osm(-)和对照条件相比,Na⁺-Ca²⁺交换体的贡献更大。总体而言,这些新的电生理结果有助于我们理解离子扰动后体积调节的机制。从转化医学角度来看,我们的结果也可能具有相关性,因为Na⁺-Ca²⁺交换体可被视为规划新型治疗的靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验