DrugE-Rank:通过集成学习排序改进新候选药物或靶点的药物-靶点相互作用预测。

DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank.

作者信息

Yuan Qingjun, Gao Junning, Wu Dongliang, Zhang Shihua, Mamitsuka Hiroshi, Zhu Shanfeng

机构信息

School of Computer Science, Fudan University, Shanghai, China Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China.

National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.

出版信息

Bioinformatics. 2016 Jun 15;32(12):i18-i27. doi: 10.1093/bioinformatics/btw244.

Abstract

MOTIVATION

Identifying drug-target interactions is an important task in drug discovery. To reduce heavy time and financial cost in experimental way, many computational approaches have been proposed. Although these approaches have used many different principles, their performance is far from satisfactory, especially in predicting drug-target interactions of new candidate drugs or targets.

METHODS

Approaches based on machine learning for this problem can be divided into two types: feature-based and similarity-based methods. Learning to rank is the most powerful technique in the feature-based methods. Similarity-based methods are well accepted, due to their idea of connecting the chemical and genomic spaces, represented by drug and target similarities, respectively. We propose a new method, DrugE-Rank, to improve the prediction performance by nicely combining the advantages of the two different types of methods. That is, DrugE-Rank uses LTR, for which multiple well-known similarity-based methods can be used as components of ensemble learning.

RESULTS

The performance of DrugE-Rank is thoroughly examined by three main experiments using data from DrugBank: (i) cross-validation on FDA (US Food and Drug Administration) approved drugs before March 2014; (ii) independent test on FDA approved drugs after March 2014; and (iii) independent test on FDA experimental drugs. Experimental results show that DrugE-Rank outperforms competing methods significantly, especially achieving more than 30% improvement in Area under Prediction Recall curve for FDA approved new drugs and FDA experimental drugs.

AVAILABILITY

http://datamining-iip.fudan.edu.cn/service/DrugE-Rank

CONTACT

zhusf@fudan.edu.cn

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

识别药物-靶点相互作用是药物研发中的一项重要任务。为了减少实验方法中巨大的时间和资金成本,人们提出了许多计算方法。尽管这些方法采用了许多不同的原理,但其性能仍远不能令人满意,尤其是在预测新候选药物或靶点的药物-靶点相互作用方面。

方法

基于机器学习解决此问题的方法可分为两类:基于特征的方法和基于相似性的方法。在基于特征的方法中,排序学习是最强大的技术。基于相似性的方法因其分别以药物和靶点相似性来连接化学和基因组空间的理念而被广泛接受。我们提出了一种新方法DrugE-Rank,通过巧妙地结合这两种不同类型方法的优点来提高预测性能。也就是说,DrugE-Rank使用排序学习,其中多种著名的基于相似性的方法可作为集成学习的组件。

结果

使用DrugBank中的数据通过三个主要实验全面检验了DrugE-Rank的性能:(i)对2014年3月之前美国食品药品监督管理局(FDA)批准的药物进行交叉验证;(ii)对2014年3月之后FDA批准的药物进行独立测试;以及(iii)对FDA实验性药物进行独立测试。实验结果表明,DrugE-Rank显著优于竞争方法,尤其是在预测召回曲线下面积方面,对于FDA批准的新药和FDA实验性药物提高了30%以上。

可用性

http://datamining-iip.fudan.edu.cn/service/DrugE-Rank

联系方式

zhusf@fudan.edu.cn

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96d1/4908328/c0f345db26a5/btw244f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索