Peng Yu, Zhao Shouwei, Zeng Zhiliang, Hu Xiang, Yin Zhixiang
School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, China.
Front Microbiol. 2023 Jan 5;13:1092467. doi: 10.3389/fmicb.2022.1092467. eCollection 2022.
Prediction of drug-target interactions (DTIs) plays an important role in drug development. However, traditional laboratory methods to determine DTIs require a lot of time and capital costs. In recent years, many studies have shown that using machine learning methods to predict DTIs can speed up the drug development process and reduce capital costs. An excellent DTI prediction method should have both high prediction accuracy and low computational cost. In this study, we noticed that the previous research based on deep forests used XGBoost as the estimator in the cascade, we applied LightGBM instead of XGBoost to the cascade forest as the estimator, then the estimator group was determined experimentally as three LightGBMs and three ExtraTrees, this new model is called LGBMDF. We conducted 5-fold cross-validation on LGBMDF and other state-of-the-art methods using the same dataset, and compared their Sn, Sp, MCC, AUC and AUPR. Finally, we found that our method has better performance and faster calculation speed.
药物-靶点相互作用(DTIs)的预测在药物研发中起着重要作用。然而,传统的确定DTIs的实验室方法需要大量时间和资金成本。近年来,许多研究表明,使用机器学习方法预测DTIs可以加速药物研发过程并降低资金成本。一种优秀的DTI预测方法应该既具有高预测准确性又具有低计算成本。在本研究中,我们注意到先前基于深度森林的研究在级联中使用XGBoost作为估计器,我们将LightGBM而非XGBoost应用于级联森林作为估计器,然后通过实验确定估计器组为三个LightGBM和三个ExtraTrees,这个新模型称为LGBMDF。我们使用相同的数据集对LGBMDF和其他先进方法进行了5折交叉验证,并比较了它们的灵敏度(Sn)、特异度(Sp)、马修斯相关系数(MCC)、曲线下面积(AUC)和精确召回率曲线下面积(AUPR)。最后,我们发现我们的方法具有更好的性能和更快的计算速度。