Suppr超能文献

RankMHC:学习对I类肽-主要组织相容性复合体结构模型进行排序。

RankMHC: Learning to Rank Class-I Peptide-MHC Structural Models.

作者信息

Fasoulis Romanos, Paliouras Georgios, Kavraki Lydia E

机构信息

Department of Computer Science, Rice University, Houston, Texas 77005, United States.

Institute of Informatics and Telecommunications, NCSR Demokritos, Athens 15341, Greece.

出版信息

J Chem Inf Model. 2024 Dec 9;64(23):8729-8742. doi: 10.1021/acs.jcim.4c01278. Epub 2024 Nov 18.

Abstract

The binding of peptides to class-I Major Histocompability Complex (MHC) receptors and their subsequent recognition downstream by T-cell receptors are crucial processes for most multicellular organisms to be able to fight various diseases. Thus, the identification of peptide antigens that can elicit an immune response is of immense importance for developing successful therapies for bacterial and viral infections, even cancer. Recently, studies have demonstrated the importance of peptide-MHC (pMHC) structural analysis, with pMHC structural modeling methods gradually becoming more popular in peptide antigen identification workflows. Most of the pMHC structural modeling tools provide an ensemble of candidate peptide poses in the MHC-I cleft, each associated with a score stemming from a scoring function, with the top scoring pose assumed to be the most representative of the ensemble. However, identifying the binding mode, that is, the peptide pose from the ensemble that is closer to an unavailable native structure, is not trivial. Oftentimes, the peptide poses characterized as best by a protein-ligand scoring function are not the ones that are the most representative of the actual structure. In this work, we frame the peptide binding pose identification problem as a Learning-to-Rank (LTR) problem. We present RankMHC, an LTR-based pMHC binding mode identification predictor, which is specifically trained to predict the most accurate ranking of an ensemble of pMHC conformations. RankMHC outperforms classical peptide-ligand scoring functions, as well as previous Machine Learning (ML)-based binding pose predictors. We further demonstrate that RankMHC can be used with many pMHC structural modeling tools that use different structural modeling protocols.

摘要

肽与I类主要组织相容性复合体(MHC)受体的结合以及随后被T细胞受体在下游识别,是大多数多细胞生物能够对抗各种疾病的关键过程。因此,鉴定能够引发免疫反应的肽抗原对于开发针对细菌和病毒感染甚至癌症的成功疗法极为重要。最近,研究已经证明了肽-MHC(pMHC)结构分析的重要性,随着pMHC结构建模方法在肽抗原鉴定工作流程中逐渐变得更加流行。大多数pMHC结构建模工具在MHC-I裂隙中提供一组候选肽构象,每个构象都与一个源自评分函数的分数相关联,得分最高的构象被认为是该组中最具代表性的。然而,识别结合模式,即从该组中找到更接近不可得天然结构的肽构象并非易事。通常,通过蛋白质-配体评分函数表征为最佳的肽构象并非最能代表实际结构的构象。在这项工作中,我们将肽结合构象识别问题构建为一个排序学习(LTR)问题。我们提出了RankMHC,这是一种基于LTR的pMHC结合模式识别预测器,它经过专门训练以预测pMHC构象组的最准确排序。RankMHC优于经典的肽-配体评分函数以及先前基于机器学习(ML)的结合构象预测器。我们进一步证明,RankMHC可与许多使用不同结构建模协议的pMHC结构建模工具一起使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0383/11633655/88cb853fc572/ci4c01278_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验