Suppr超能文献

RapMap:一种用于将RNA测序读数映射到转录组的快速、灵敏且准确的工具。

RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes.

作者信息

Srivastava Avi, Sarkar Hirak, Gupta Nitish, Patro Rob

机构信息

Department of Computer Science, Stony Brook University Stony Brook, New York, NY 11794-2424, USA.

出版信息

Bioinformatics. 2016 Jun 15;32(12):i192-i200. doi: 10.1093/bioinformatics/btw277.

Abstract

MOTIVATION

The alignment of sequencing reads to a transcriptome is a common and important step in many RNA-seq analysis tasks. When aligning RNA-seq reads directly to a transcriptome (as is common in the de novo setting or when a trusted reference annotation is available), care must be taken to report the potentially large number of multi-mapping locations per read. This can pose a substantial computational burden for existing aligners, and can considerably slow downstream analysis.

RESULTS

We introduce a novel concept, quasi-mapping, and an efficient algorithm implementing this approach for mapping sequencing reads to a transcriptome. By attempting only to report the potential loci of origin of a sequencing read, and not the base-to-base alignment by which it derives from the reference, RapMap-our tool implementing quasi-mapping-is capable of mapping sequencing reads to a target transcriptome substantially faster than existing alignment tools. The algorithm we use to implement quasi-mapping uses several efficient data structures and takes advantage of the special structure of shared sequence prevalent in transcriptomes to rapidly provide highly-accurate mapping information. We demonstrate how quasi-mapping can be successfully applied to the problems of transcript-level quantification from RNA-seq reads and the clustering of contigs from de novo assembled transcriptomes into biologically meaningful groups.

AVAILABILITY AND IMPLEMENTATION

RapMap is implemented in C ++11 and is available as open-source software, under GPL v3, at https://github.com/COMBINE-lab/RapMap

CONTACT

rob.patro@cs.stonybrook.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

将测序 reads 比对到转录组是许多 RNA-seq 分析任务中常见且重要的一步。当将 RNA-seq reads 直接比对到转录组时(如在从头组装的情况下或有可靠的参考注释时常见的做法),必须注意报告每个 reads 潜在的大量多比对位置。这可能给现有的比对器带来巨大的计算负担,并会显著减慢下游分析的速度。

结果

我们引入了一个新颖的概念——准比对,以及一种实现将测序 reads 比对到转录组的有效算法。通过仅尝试报告测序 reads 的潜在起源位点,而不是其从参考序列派生而来的逐碱基比对,我们实现准比对的工具 RapMap 能够比现有的比对工具更快地将测序 reads 比对到目标转录组。我们用于实现准比对的算法使用了几种高效的数据结构,并利用转录组中普遍存在的共享序列的特殊结构,快速提供高精度的比对信息。我们展示了准比对如何能够成功应用于从 RNA-seq reads 进行转录本水平定量以及将从头组装的转录组中的重叠群聚类为具有生物学意义的组的问题。

可用性和实现方式

RapMap 用 C++11 实现,作为开源软件,遵循 GPL v3 协议,可在 https://github.com/COMBINE-lab/RapMap 获取。

联系方式

rob.patro@cs.stonybrook.edu

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576a/4908361/54de291046b1/btw277f1p.jpg

相似文献

1
RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes.
Bioinformatics. 2016 Jun 15;32(12):i192-i200. doi: 10.1093/bioinformatics/btw277.
2
Mapping RNA-seq reads to transcriptomes efficiently based on learning to hash method.
Comput Biol Med. 2020 Jan;116:103539. doi: 10.1016/j.compbiomed.2019.103539. Epub 2019 Nov 13.
3
Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression.
Bioinformatics. 2018 Jul 1;34(13):2177-2184. doi: 10.1093/bioinformatics/bty078.
4
ASElux: an ultra-fast and accurate allelic reads counter.
Bioinformatics. 2018 Apr 15;34(8):1313-1320. doi: 10.1093/bioinformatics/btx762.
5
ChopStitch: exon annotation and splice graph construction using transcriptome assembly and whole genome sequencing data.
Bioinformatics. 2018 May 15;34(10):1697-1704. doi: 10.1093/bioinformatics/btx839.
6
Grouper: graph-based clustering and annotation for improved de novo transcriptome analysis.
Bioinformatics. 2018 Oct 1;34(19):3265-3272. doi: 10.1093/bioinformatics/bty378.
7
STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25.
8
BRANCH: boosting RNA-Seq assemblies with partial or related genomic sequences.
Bioinformatics. 2013 May 15;29(10):1250-9. doi: 10.1093/bioinformatics/btt127. Epub 2013 Mar 14.
9
OSA: a fast and accurate alignment tool for RNA-Seq.
Bioinformatics. 2012 Jul 15;28(14):1933-4. doi: 10.1093/bioinformatics/bts294. Epub 2012 May 15.
10
Evaluation of tools for long read RNA-seq splice-aware alignment.
Bioinformatics. 2018 Mar 1;34(5):748-754. doi: 10.1093/bioinformatics/btx668.

引用本文的文献

1
IL-10 sensing by lung interstitial macrophages prevents bacterial dysbiosis-driven pulmonary inflammation and maintains immune homeostasis.
Immunity. 2025 May 13;58(5):1306-1326.e7. doi: 10.1016/j.immuni.2025.04.004. Epub 2025 Apr 29.
2
DNA-protein quasi-mapping for rapid differential gene expression analysis in non-model organisms.
BMC Bioinformatics. 2024 Oct 24;25(Suppl 2):335. doi: 10.1186/s12859-024-05924-1.
4
Single-cell omics: experimental workflow, data analyses and applications.
Sci China Life Sci. 2025 Jan;68(1):5-102. doi: 10.1007/s11427-023-2561-0. Epub 2024 Jul 23.
6
A pairwise cytokine code explains the organism-wide response to sepsis.
Nat Immunol. 2024 Feb;25(2):226-239. doi: 10.1038/s41590-023-01722-8. Epub 2024 Jan 8.
8
Cellular Heterogeneity of Activated Primary Human Macrophages and Associated Drug-Gene Networks: From Biology to Precision Therapeutics.
Circulation. 2023 Nov 7;148(19):1459-1478. doi: 10.1161/CIRCULATIONAHA.123.064794. Epub 2023 Oct 18.
9
Toblerone: detecting exon deletion events in cancer using RNA-seq.
F1000Res. 2023 Feb 3;12:130. doi: 10.12688/f1000research.129490.1. eCollection 2023.
10
Counting pseudoalignments to novel splicing events.
Bioinformatics. 2023 Jul 1;39(7). doi: 10.1093/bioinformatics/btad419.

本文引用的文献

1
Near-optimal probabilistic RNA-seq quantification.
Nat Biotechnol. 2016 May;34(5):525-7. doi: 10.1038/nbt.3519. Epub 2016 Apr 4.
2
Proportionality: a valid alternative to correlation for relative data.
PLoS Comput Biol. 2015 Mar 16;11(3):e1004075. doi: 10.1371/journal.pcbi.1004075. eCollection 2015 Mar.
3
HISAT: a fast spliced aligner with low memory requirements.
Nat Methods. 2015 Apr;12(4):357-60. doi: 10.1038/nmeth.3317. Epub 2015 Mar 9.
4
TIGAR2: sensitive and accurate estimation of transcript isoform expression with longer RNA-Seq reads.
BMC Genomics. 2014;15 Suppl 10(Suppl 10):S5. doi: 10.1186/1471-2164-15-S10-S5. Epub 2014 Dec 12.
5
Ensembl 2015.
Nucleic Acids Res. 2015 Jan;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub 2014 Oct 28.
6
High-resolution transcriptome analysis with long-read RNA sequencing.
PLoS One. 2014 Sep 24;9(9):e108095. doi: 10.1371/journal.pone.0108095. eCollection 2014.
7
Corset: enabling differential gene expression analysis for de novo assembled transcriptomes.
Genome Biol. 2014 Jul 26;15(7):410. doi: 10.1186/s13059-014-0410-6.
8
RNA-Skim: a rapid method for RNA-Seq quantification at transcript level.
Bioinformatics. 2014 Jun 15;30(12):i283-i292. doi: 10.1093/bioinformatics/btu288.
9
Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms.
Nat Biotechnol. 2014 May;32(5):462-4. doi: 10.1038/nbt.2862. Epub 2014 Apr 20.
10
Transcriptome and genome sequencing uncovers functional variation in humans.
Nature. 2013 Sep 26;501(7468):506-11. doi: 10.1038/nature12531. Epub 2013 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验