Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
Nat Immunol. 2024 Feb;25(2):226-239. doi: 10.1038/s41590-023-01722-8. Epub 2024 Jan 8.
Sepsis is a systemic response to infection with life-threatening consequences. Our understanding of the molecular and cellular impact of sepsis across organs remains rudimentary. Here, we characterize the pathogenesis of sepsis by measuring dynamic changes in gene expression across organs. To pinpoint molecules controlling organ states in sepsis, we compare the effects of sepsis on organ gene expression to those of 6 singles and 15 pairs of recombinant cytokines. Strikingly, we find that the pairwise effects of tumor necrosis factor plus interleukin (IL)-18, interferon-gamma or IL-1β suffice to mirror the impact of sepsis across tissues. Mechanistically, we map the cellular effects of sepsis and cytokines by computing changes in the abundance of 195 cell types across 9 organs, which we validate by whole-mouse spatial profiling. Our work decodes the cytokine cacophony in sepsis into a pairwise cytokine message capturing the gene, cell and tissue responses of the host to the disease.
败血症是一种全身性感染反应,可能导致生命危险。我们对败血症在多个器官中引发的分子和细胞影响的了解还处于初级阶段。在这里,我们通过测量器官间基因表达的动态变化来描述败血症的发病机制。为了确定控制败血症器官状态的分子,我们将败血症对器官基因表达的影响与 6 种单因子和 15 对重组细胞因子的影响进行了比较。令人惊讶的是,我们发现肿瘤坏死因子加白细胞介素(IL)-18、干扰素-γ或 IL-1β的两两作用足以反映败血症在组织间的影响。从机制上讲,我们通过计算 9 个器官中 195 种细胞类型的丰度变化来描绘败血症和细胞因子的细胞效应,并通过全鼠空间分析进行验证。我们的工作将败血症中的细胞因子嘈杂声解码为一种能够捕捉宿主对疾病的基因、细胞和组织反应的双细胞因子信息。