Suppr超能文献

使用ProQDock寻找正确的蛋白质-蛋白质对接模型。

Finding correct protein-protein docking models using ProQDock.

作者信息

Basu Sankar, Wallner Björn

机构信息

Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden.

出版信息

Bioinformatics. 2016 Jun 15;32(12):i262-i270. doi: 10.1093/bioinformatics/btw257.

Abstract

MOTIVATION

Protein-protein interactions are a key in virtually all biological processes. For a detailed understanding of the biological processes, the structure of the protein complex is essential. Given the current experimental techniques for structure determination, the vast majority of all protein complexes will never be solved by experimental techniques. In lack of experimental data, computational docking methods can be used to predict the structure of the protein complex. A common strategy is to generate many alternative docking solutions (atomic models) and then use a scoring function to select the best. The success of the computational docking technique is, to a large degree, dependent on the ability of the scoring function to accurately rank and score the many alternative docking models.

RESULTS

Here, we present ProQDock, a scoring function that predicts the absolute quality of docking model measured by a novel protein docking quality score (DockQ). ProQDock uses support vector machines trained to predict the quality of protein docking models using features that can be calculated from the docking model itself. By combining different types of features describing both the protein-protein interface and the overall physical chemistry, it was possible to improve the correlation with DockQ from 0.25 for the best individual feature (electrostatic complementarity) to 0.49 for the final version of ProQDock. ProQDock performed better than the state-of-the-art methods ZRANK and ZRANK2 in terms of correlations, ranking and finding correct models on an independent test set. Finally, we also demonstrate that it is possible to combine ProQDock with ZRANK and ZRANK2 to improve performance even further.

AVAILABILITY AND IMPLEMENTATION

http://bioinfo.ifm.liu.se/ProQDock

CONTACT

bjornw@ifm.liu.se

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

蛋白质-蛋白质相互作用实际上是所有生物过程的关键。为了详细了解生物过程,蛋白质复合物的结构至关重要。鉴于当前用于结构测定的实验技术,绝大多数蛋白质复合物永远无法通过实验技术解析。在缺乏实验数据的情况下,计算对接方法可用于预测蛋白质复合物的结构。一种常见策略是生成许多替代对接解决方案(原子模型),然后使用评分函数来选择最佳方案。计算对接技术的成功在很大程度上取决于评分函数准确对众多替代对接模型进行排名和评分的能力。

结果

在此,我们展示了ProQDock,这是一种通过新型蛋白质对接质量评分(DockQ)来预测对接模型绝对质量的评分函数。ProQDock使用支持向量机进行训练,以利用可从对接模型本身计算得出的特征来预测蛋白质对接模型的质量。通过结合描述蛋白质-蛋白质界面和整体物理化学性质的不同类型特征,有可能将与DockQ的相关性从最佳单个特征(静电互补性)的0.25提高到ProQDock最终版本的0.49。在相关性、排名以及在独立测试集上找到正确模型方面,ProQDock的表现优于当前最先进的方法ZRANK和ZRANK2。最后,我们还证明可以将ProQDock与ZRANK和ZRANK2相结合以进一步提高性能。

可用性与实现方式

http://bioinfo.ifm.liu.se/ProQDock

联系方式

bjornw@ifm.liu.se

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94a1/4908341/d26962b14cf3/btw257f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验