Suppr超能文献

射血分数降低的心力衰竭生物标志物发现与诊断的尿液蛋白质组学初步研究

Urinary Proteomics Pilot Study for Biomarker Discovery and Diagnosis in Heart Failure with Reduced Ejection Fraction.

作者信息

Rossing Kasper, Bosselmann Helle Skovmand, Gustafsson Finn, Zhang Zhen-Yu, Gu Yu-Mei, Kuznetsova Tatiana, Nkuipou-Kenfack Esther, Mischak Harald, Staessen Jan A, Koeck Thomas, Schou Morten

机构信息

Department of Cardiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.

Department of Cardio-, Nephro-, and Endocrinology, North Zealand Hospital, University of Copenhagen, Copenhagen, Denmark.

出版信息

PLoS One. 2016 Jun 16;11(6):e0157167. doi: 10.1371/journal.pone.0157167. eCollection 2016.

Abstract

BACKGROUND

Biomarker discovery and new insights into the pathophysiology of heart failure with reduced ejection fraction (HFrEF) may emerge from recent advances in high-throughput urinary proteomics. This could lead to improved diagnosis, risk stratification and management of HFrEF.

METHODS AND RESULTS

Urine samples were analyzed by on-line capillary electrophoresis coupled to electrospray ionization micro time-of-flight mass spectrometry (CE-MS) to generate individual urinary proteome profiles. In an initial biomarker discovery cohort, analysis of urinary proteome profiles from 33 HFrEF patients and 29 age- and sex-matched individuals without HFrEF resulted in identification of 103 peptides that were significantly differentially excreted in HFrEF. These 103 peptides were used to establish the support vector machine-based HFrEF classifier HFrEF103. In a subsequent validation cohort, HFrEF103 very accurately (area under the curve, AUC = 0.972) discriminated between HFrEF patients (N = 94, sensitivity = 93.6%) and control individuals with and without impaired renal function and hypertension (N = 552, specificity = 92.9%). Interestingly, HFrEF103 showed low sensitivity (12.6%) in individuals with diastolic left ventricular dysfunction (N = 176). The HFrEF-related peptide biomarkers mainly included fragments of fibrillar type I and III collagen but also, e.g., of fibrinogen beta and alpha-1-antitrypsin.

CONCLUSION

CE-MS based urine proteome analysis served as a sensitive tool to determine a vast array of HFrEF-related urinary peptide biomarkers which might help improving our understanding and diagnosis of heart failure.

摘要

背景

射血分数降低的心力衰竭(HFrEF)的生物标志物发现以及对其病理生理学的新见解可能源于高通量尿液蛋白质组学的最新进展。这可能会改善HFrEF的诊断、风险分层和管理。

方法与结果

通过在线毛细管电泳与电喷雾电离微飞行时间质谱联用(CE-MS)分析尿液样本,以生成个体尿液蛋白质组图谱。在最初的生物标志物发现队列中,对33例HFrEF患者和29例年龄和性别匹配的无HFrEF个体的尿液蛋白质组图谱进行分析,结果鉴定出103种在HFrEF中排泄有显著差异的肽段。这103种肽段被用于建立基于支持向量机的HFrEF分类器HFrEF103。在随后的验证队列中,HFrEF103能够非常准确地(曲线下面积,AUC = 0.972)区分HFrEF患者(N = 94,敏感性 = 93.6%)和有或无肾功能损害及高血压的对照个体(N = 552,特异性 = 92.9%)。有趣的是,HFrEF103在舒张性左心室功能障碍个体(N = 176)中敏感性较低(12.6%)。与HFrEF相关的肽生物标志物主要包括I型和III型纤维状胶原的片段,但也包括例如纤维蛋白原β和α-1-抗胰蛋白酶的片段。

结论

基于CE-MS的尿液蛋白质组分析是一种灵敏的工具,可用于确定大量与HFrEF相关的尿液肽生物标志物,这可能有助于增进我们对心力衰竭的理解和诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e11/4911082/e2d26acd80e7/pone.0157167.g001.jpg

相似文献

1
Urinary Proteomics Pilot Study for Biomarker Discovery and Diagnosis in Heart Failure with Reduced Ejection Fraction.
PLoS One. 2016 Jun 16;11(6):e0157167. doi: 10.1371/journal.pone.0157167. eCollection 2016.
3
Novel Urinary Peptidomic Classifier Predicts Incident Heart Failure.
J Am Heart Assoc. 2017 Aug 7;6(8):e005432. doi: 10.1161/JAHA.116.005432.
5
MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure.
Eur J Heart Fail. 2015 Apr;17(4):405-15. doi: 10.1002/ejhf.244. Epub 2015 Mar 4.
9
Urine proteome analysis as a discovery tool in patients with deep vein thrombosis and pulmonary embolism.
Proteomics Clin Appl. 2016 May;10(5):574-84. doi: 10.1002/prca.201500105. Epub 2016 Apr 4.

引用本文的文献

3
Utilizing Artificial Intelligence to Enhance Health Equity Among Patients with Heart Failure.
Heart Fail Clin. 2022 Apr;18(2):259-273. doi: 10.1016/j.hfc.2021.11.001. Epub 2022 Mar 4.
6
Urinary peptides in heart failure: a link to molecular pathophysiology.
Eur J Heart Fail. 2021 Nov;23(11):1875-1887. doi: 10.1002/ejhf.2195. Epub 2021 May 7.
8
Advances in Cardiovascular Biomarker Discovery.
Biomedicines. 2020 Nov 30;8(12):552. doi: 10.3390/biomedicines8120552.
9
Machine learning prediction in cardiovascular diseases: a meta-analysis.
Sci Rep. 2020 Sep 29;10(1):16057. doi: 10.1038/s41598-020-72685-1.
10
Artificial Intelligence for Cardiac Imaging-Genetics Research.
Front Cardiovasc Med. 2020 Jan 21;6:195. doi: 10.3389/fcvm.2019.00195. eCollection 2019.

本文引用的文献

1
Multimarker proteomic profiling for the prediction of cardiovascular mortality in patients with chronic heart failure.
PLoS One. 2015 Apr 23;10(4):e0119265. doi: 10.1371/journal.pone.0119265. eCollection 2015.
2
Capillary zone electrophoresis on-line coupled to mass spectrometry: A perspective application for clinical proteomics.
Proteomics Clin Appl. 2015 Jun;9(5-6):453-68. doi: 10.1002/prca.201400113. Epub 2015 Apr 7.
3
Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction.
J Am Coll Cardiol. 2014 Dec 2;64(21):2281-93. doi: 10.1016/j.jacc.2014.08.036. Epub 2014 Nov 24.
5
Which biomarkers do clinicians need for diagnosis and management of heart failure with reduced ejection fraction?
Clin Chim Acta. 2015 Mar 30;443:9-16. doi: 10.1016/j.cca.2014.10.046. Epub 2014 Nov 15.
6
Markers of fibrosis, inflammation, and remodeling pathways in heart failure.
Clin Chim Acta. 2015 Mar 30;443:29-38. doi: 10.1016/j.cca.2014.09.006. Epub 2014 Sep 10.
7
Left ventricular diastolic function in relation to the urinary proteome: a proof-of-concept study in a general population.
Int J Cardiol. 2014 Sep;176(1):158-65. doi: 10.1016/j.ijcard.2014.07.014. Epub 2014 Jul 12.
9
Analysis of complex, multidimensional datasets.
Drug Discov Today Technol. 2006 Spring;3(1):13-9. doi: 10.1016/j.ddtec.2006.03.010.
10
α-1 Protein evaluation to stratify heart failure patients.
J Cardiovasc Med (Hagerstown). 2017 Oct;18(10):774-776. doi: 10.2459/JCM.0000000000000016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验