Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom.
J Control Release. 2016 Sep 28;238:289-299. doi: 10.1016/j.jconrel.2016.06.024. Epub 2016 Jun 15.
Genetically engineered neural stem cell (NSC) transplant populations offer key benefits in regenerative neurology, for release of therapeutic biomolecules in ex vivo gene therapy. NSCs are 'hard-to-transfect' but amenable to 'magnetofection'. Despite the high clinical potential of this approach, the low and transient transfection associated with the large size of therapeutic DNA constructs is a critical barrier to translation. We demonstrate for the first time that DNA minicircles (small DNA vectors encoding essential gene expression components but devoid of a bacterial backbone, thereby reducing construct size versus conventional plasmids) deployed with magnetofection achieve the highest, safe non-viral DNA transfection levels (up to 54%) reported so far for primary NSCs. Minicircle-functionalized magnetic nanoparticle (MNP)-mediated gene delivery also resulted in sustained gene expression for up to four weeks. All daughter cell types of engineered NSCs (neurons, astrocytes and oligodendrocytes) were transfected (in contrast to conventional plasmids which usually yield transfected astrocytes only), offering advantages for targeted cell engineering. In addition to enhancing MNP functionality as gene delivery vectors, minicircle technology provides key benefits from safety/scale up perspectives. Therefore, we consider the proof-of-concept of fusion of technologies used here offers high potential as a clinically translatable genetic modification strategy for cell therapy.
基因工程神经干细胞(NSC)移植群体在再生神经学中具有重要优势,可用于体外基因治疗中释放治疗性生物分子。NSC 是“难转染”的,但可采用“磁转染”。尽管这种方法具有很高的临床潜力,但由于治疗性 DNA 构建体的体积较大,与低转染率和短暂转染相关的问题是转化的一个关键障碍。我们首次证明,使用磁转染方法,DNA 微环(小 DNA 载体,可编码必需的基因表达成分,但不含细菌骨架,从而相对于常规质粒减小了构建体的大小)可实现迄今为止报告的原代 NSC 中最高、安全的非病毒 DNA 转染水平(高达 54%)。微环功能化的磁性纳米颗粒(MNP)介导的基因传递也可实现长达四周的持续基因表达。工程化 NSC 的所有子细胞类型(神经元、星形胶质细胞和少突胶质细胞)都被转染(与通常仅产生转染星形胶质细胞的常规质粒相反),为靶向细胞工程提供了优势。除了增强 MNP 作为基因传递载体的功能外,微环技术还从安全性/规模扩大的角度提供了关键优势。因此,我们认为,这里使用的技术融合的概念验证为细胞治疗的临床可转化遗传修饰策略提供了很高的潜力。