Pickard Mark R, Adams Christopher F, Chari Divya M
Institute of Medicine, University of Chester, Chester, United Kingdom.
Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Curr Protoc Stem Cell Biol. 2017 Feb 2;40:2D.19.1-2D.19.16. doi: 10.1002/cpsc.23.
Neural stem cells (NSCs) have high translational potential in transplantation therapies for neural repair. Enhancement of their therapeutic capacity by genetic engineering is an important goal for regenerative neurology. Magnetic nanoparticles (MNPs) are major non-viral vectors for safe bioengineering of NSCs, offering critical translational benefits over viral vectors, including safety, scalability, and ease of use. This unit describes protocols for the production of suspension (neurosphere) and adherent (monolayer) murine NSC cultures. Genetic engineering of NSCs with MNPs and the application of 'magnetofection' (magnetic fields) or 'multifection' (repeat transfection) approaches to enhance gene delivery are described. Magnetofection of monolayer cultures achieves optimal transfection, but neurospheres offer key advantages for neural graft survival post-transplantation. A protocol is presented which allows the advantageous features of each approach to be combined into a single procedure for transplantation. The adaptation of these protocols for other MNP preparations is considered, with emphasis on the evaluation of procedural safety. © 2017 by John Wiley & Sons, Inc.
神经干细胞(NSCs)在神经修复的移植治疗中具有很高的转化潜力。通过基因工程提高其治疗能力是再生神经学的一个重要目标。磁性纳米颗粒(MNPs)是用于NSCs安全生物工程的主要非病毒载体,与病毒载体相比具有关键的转化优势,包括安全性、可扩展性和易用性。本单元描述了悬浮(神经球)和贴壁(单层)小鼠NSC培养物的制备方案。描述了用MNPs对NSCs进行基因工程以及应用“磁转染”(磁场)或“多次转染”(重复转染)方法来增强基因传递。单层培养物的磁转染可实现最佳转染,但神经球在移植后神经移植物存活方面具有关键优势。本文介绍了一种方案,该方案可将每种方法的优势特征结合到一个单一的移植程序中。考虑了将这些方案应用于其他MNP制剂的情况,重点是程序安全性评估。© 2017约翰威立父子公司版权所有。