Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom.
J Control Release. 2016 Sep 28;238:300-310. doi: 10.1016/j.jconrel.2016.06.039. Epub 2016 Jun 28.
Both neurotrophin-based therapy and neural stem cell (NSC)-based strategies have progressed to clinical trials for treatment of neurological diseases and injuries. Brain-derived neurotrophic factor (BDNF) in particular can confer neuroprotective and neuro-regenerative effects in preclinical studies, complementing the cell replacement benefits of NSCs. Therefore, combining both approaches by genetically-engineering NSCs to express BDNF is an attractive approach to achieve combinatorial therapy for complex neural injuries. Current genetic engineering approaches almost exclusively employ viral vectors for gene delivery to NSCs though safety and scalability pose major concerns for clinical translation and applicability. Magnetofection, a non-viral gene transfer approach deploying magnetic nanoparticles and DNA with magnetic fields offers a safe alternative but significant improvements are required to enhance its clinical application for delivery of large sized therapeutic plasmids. Here, we demonstrate for the first time the feasibility of using minicircles with magnetofection technology to safely engineer NSCs to overexpress BDNF. Primary mouse NSCs overexpressing BDNF generated increased daughter neuronal cell numbers post-differentiation, with accelerated maturation over a four-week period. Based on our findings we highlight the clinical potential of minicircle/magnetofection technology for therapeutic delivery of key neurotrophic agents.
基于神经营养因子的治疗和神经干细胞(NSC)为基础的策略都已进展到神经疾病和损伤治疗的临床试验阶段。脑源性神经营养因子(BDNF)在临床前研究中尤其能发挥神经保护和神经再生作用,补充 NSCs 的细胞替代益处。因此,通过基因工程将 NSCs 表达 BDNF 是实现复杂神经损伤联合治疗的一种有吸引力的方法。目前的基因工程方法几乎完全使用病毒载体来向 NSCs 传递基因,尽管安全性和可扩展性对临床转化和适用性构成了重大挑战。磁转染是一种非病毒基因传递方法,它使用磁性纳米颗粒和磁场携带 DNA,提供了一种安全的替代方法,但需要进行重大改进,以增强其用于递送大型治疗性质粒的临床应用。在这里,我们首次证明了使用微环和磁转染技术安全地将 NSCs 工程改造为过表达 BDNF 的可行性。过表达 BDNF 的原代小鼠 NSCs 在分化后产生了更多的子神经元细胞,在四周的时间内加速成熟。基于我们的发现,我们强调了微环/磁转染技术在关键神经营养因子治疗性递送上的临床潜力。