Suppr超能文献

原鸽(Columba livia)飞羽的附着:覆羽和平滑肌协调翅膀变形。

Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.

作者信息

Hieronymus Tobin L

机构信息

Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA.

出版信息

J Anat. 2016 Nov;229(5):631-656. doi: 10.1111/joa.12511. Epub 2016 Jun 20.

Abstract

Mechanisms for passively coordinating forelimb movements and flight feather abduction and adduction have been described separately from both in vivo and ex vivo studies. Skeletal coordination has been identified as a way for birds to simplify the neuromotor task of controlling flight stroke, but an understanding of the relationship between skeletal coordination and the coordination of the aerodynamic control surface (the flight feathers) has been slow to materialize. This break between the biomechanical and aerodynamic approaches - between skeletal kinematics and airfoil shape - has hindered the study of dynamic flight behaviors. Here I use dissection and histology to identify previously overlooked interconnections between musculoskeletal elements and flight feathers. Many of these structures are well-placed to directly link elements of the passive musculoskeletal coordination system with flight feather movements. Small bundles of smooth muscle form prominent connections between upper forearm coverts (deck feathers) and the ulna, as well as the majority of interconnections between major flight feathers of the hand. Abundant smooth muscle may play a role in efficient maintenance of folded wing posture, and may also provide an autonomically regulated means of tuning wing shape and aeroelastic behavior in flight. The pattern of muscular and ligamentous linkages of flight feathers to underlying muscle and bone may provide predictable passive guidance for the shape of the airfoil during flight stroke. The structures described here provide an anatomical touchstone for in vivo experimental tests of wing surface coordination in an extensively researched avian model species.

摘要

被动协调前肢运动以及飞羽外展和内收的机制已分别在体内和体外研究中有所描述。骨骼协调已被确定为鸟类简化控制飞行冲程的神经运动任务的一种方式,但对骨骼协调与气动控制面(飞羽)协调之间关系的理解一直进展缓慢。生物力学和空气动力学方法之间的这种脱节——骨骼运动学和翼型形状之间的脱节——阻碍了对动态飞行行为的研究。在这里,我通过解剖和组织学来识别肌肉骨骼元素与飞羽之间先前被忽视的相互联系。这些结构中有许多位置恰当,可直接将被动肌肉骨骼协调系统的元素与飞羽运动联系起来。小束平滑肌在上臂覆羽(表层羽毛)与尺骨之间形成显著连接,以及手部主要飞羽之间的大部分连接。丰富的平滑肌可能在有效维持折叠翼姿势方面发挥作用,还可能提供一种自主调节的方式来调整飞行中的翼型形状和气动弹性行为。飞羽与下方肌肉和骨骼的肌肉和韧带连接模式可能为飞行冲程期间翼型的形状提供可预测的被动引导。这里描述的结构为在一个经过广泛研究的鸟类模型物种中进行翼面协调的体内实验测试提供了解剖学基准。

相似文献

2
Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion.
Sci Robot. 2020 Jan 16;5(38). doi: 10.1126/scirobotics.aay1246.
3
The evolution of avian wing shape and previously unrecognized trends in covert feathering.
Proc Biol Sci. 2015 Oct 7;282(1816):20151935. doi: 10.1098/rspb.2015.1935.
4
Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
BMC Evol Biol. 2015 Feb 27;15:30. doi: 10.1186/s12862-015-0303-7.
5
Specialized primary feathers produce tonal sounds during flight in rock pigeons (Columba livia).
J Exp Biol. 2016 Jul 15;219(Pt 14):2173-81. doi: 10.1242/jeb.131649. Epub 2016 May 13.
6
Passive aeroelastic deflection of avian primary feathers.
Bioinspir Biomim. 2020 Jul 22;15(5):056008. doi: 10.1088/1748-3190/ab97fd.
7
How flight feathers stick together to form a continuous morphing wing.
Science. 2020 Jan 17;367(6475):293-297. doi: 10.1126/science.aaz3358.
9
Load alleviation of feather-inspired compliant airfoils for instantaneous flow control.
Bioinspir Biomim. 2020 Oct 6;15(5). doi: 10.1088/1748-3190/ab9b6f.

引用本文的文献

1
Forelimb feathering, soft tissues, and skeleton of the flying dromaeosaurid Microraptor.
BMC Ecol Evol. 2025 Jul 1;25(1):65. doi: 10.1186/s12862-025-02397-5.
2
Wing extension-flexion coupled aeroelastic effects improve avian gliding performance.
J R Soc Interface. 2025 May;22(226):20240753. doi: 10.1098/rsif.2024.0753. Epub 2025 May 7.
4
Quantitative analysis of the morphing wing mechanism of raptors: Analysis methods, folding motions, and bionic design of .
Fundam Res. 2022 Apr 29;4(2):344-352. doi: 10.1016/j.fmre.2022.03.023. eCollection 2024 Mar.
5
Quantitative analysis of the morphing wing mechanism of raptors: Bionic design of Falco Peregrinus wing skeleton.
PLoS One. 2024 Apr 2;19(4):e0299982. doi: 10.1371/journal.pone.0299982. eCollection 2024.
6
Lessons from natural flight for aviation: then, now and tomorrow.
J Exp Biol. 2023 Apr 25;226(Suppl_1). doi: 10.1242/jeb.245409. Epub 2023 Apr 17.
8
Clinical examination and necropsy findings of a mountain hawk-eagle (Nisaetus nipalensis) that died during rehabilitation.
J Vet Med Sci. 2023 Jan 12;85(1):88-91. doi: 10.1292/jvms.22-0333. Epub 2022 Nov 25.
9
Raptor wing morphing with flight speed.
J R Soc Interface. 2021 Jul;18(180):20210349. doi: 10.1098/rsif.2021.0349. Epub 2021 Jul 14.
10
Cutaneous leiomyosarcoma with visceral metastases in a White Carneau pigeon and literature review.
J Vet Diagn Invest. 2021 Feb 5;33(3):1040638721992061. doi: 10.1177/1040638721992061.

本文引用的文献

1
Mechanics of the avian propatagium: Flexion-extension mechanism of the avian wing.
J Morphol. 1995 Jul;225(1):91-105. doi: 10.1002/jmor.1052250108.
2
Functional anatomy of the pigeon hand (Columba livia): A muscle stimulation study.
J Morphol. 1995 Oct;226(1):33-45. doi: 10.1002/jmor.1052260104.
3
The evolution of avian wing shape and previously unrecognized trends in covert feathering.
Proc Biol Sci. 2015 Oct 7;282(1816):20151935. doi: 10.1098/rspb.2015.1935.
4
Kinematics and aerodynamics of avian upstrokes during slow flight.
J Exp Biol. 2015 Aug;218(Pt 16):2518-27. doi: 10.1242/jeb.116228. Epub 2015 Jun 18.
5
Predicting power-optimal kinematics of avian wings.
J R Soc Interface. 2015 Jan 6;12(102):20140953. doi: 10.1098/rsif.2014.0953.
6
Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.
J R Soc Interface. 2014 Sep 6;11(98):20140541. doi: 10.1098/rsif.2014.0541.
8
Mechanical properties of the avian acrocoracohumeral ligament and its role in shoulder stabilization in flight.
J Exp Zool A Ecol Genet Physiol. 2012 Feb;317(2):83-95. doi: 10.1002/jez.724. Epub 2011 Nov 21.
9
Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.
J Exp Biol. 2011 Jun 1;214(Pt 11):1867-73. doi: 10.1242/jeb.051342.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验