Suppr超能文献

使用同步辐射钡K边减法成像对新形成的骨进行三维标记。

Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging.

作者信息

Panahifar Arash, Swanston Treena M, Jake Pushie M, Belev George, Chapman Dean, Weber Lynn, Cooper David M L

机构信息

Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

出版信息

Phys Med Biol. 2016 Jul 7;61(13):5077-5088. doi: 10.1088/0031-9155/61/13/5077. Epub 2016 Jun 20.

Abstract

Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.

摘要

骨骼是一种动态组织,呈现出复杂的生长模式以及持续的内部更新(即重塑)。追踪这些变化具有挑战性,因此基于高分辨率成像的示踪剂将为骨组织动力学提供一个强大的新视角。如果这种示踪剂能够在三维空间中被检测到,情况尤其如此。此前,锶已被证明是一种有效的示踪剂,可通过基于同步加速器的双能K边减法(KES)成像在二维或三维空间中进行检测。然而,由于锶的K边能量较低(16.105 keV),其使用仅限于非常小的样品厚度,因此不适用于体内应用。在这里,我们建立了使用钡作为替代示踪剂的原理证明,钡具有更高的K边能量(37.441 keV),尽管目前仅用于离体成像,这使得它能够应用于更大的样本,并有可能开发用于临床前动物模型的体内成像。在加拿大光源同步加速器的生物医学成像与治疗弯转磁铁(BMIT-BM)光束线上,展示了生长中大鼠二维和三维空间内的新骨形成。对比X射线荧光成像证实了KES检测到的摄取模式。这项初步工作为该示踪剂的进一步开发及其在体内开发应用的探索提供了一个平台。

相似文献

1
Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging.
Phys Med Biol. 2016 Jul 7;61(13):5077-5088. doi: 10.1088/0031-9155/61/13/5077. Epub 2016 Jun 20.
2
Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging.
Phys Med Biol. 2012 Sep 21;57(18):5777-86. doi: 10.1088/0031-9155/57/18/5777. Epub 2012 Sep 5.
3
BMIT facility at the Canadian Light Source: Advances in X-ray phase-sensitive imaging.
Phys Med. 2016 Dec;32(12):1753-1758. doi: 10.1016/j.ejmp.2016.07.090. Epub 2016 Jul 21.
4
Spectral K-edge subtraction imaging of experimental non-radioactive barium uptake in bone.
Phys Med. 2016 Dec;32(12):1765-1770. doi: 10.1016/j.ejmp.2016.07.619. Epub 2016 Aug 8.
5
Biodistribution of strontium and barium in the developing and mature skeleton of rats.
J Bone Miner Metab. 2019 May;37(3):385-398. doi: 10.1007/s00774-018-0936-x. Epub 2018 Jun 19.
6
In vivo imaging of rat cortical bone porosity by synchrotron phase contrast micro computed tomography.
Phys Med Biol. 2015 Jan 7;60(1):211-32. doi: 10.1088/0031-9155/60/1/211. Epub 2014 Dec 9.
7
Multiple energy synchrotron biomedical imaging system.
Phys Med Biol. 2016 Dec 7;61(23):8180-8198. doi: 10.1088/0031-9155/61/23/8180. Epub 2016 Nov 2.
8
K-edge subtraction imaging for iodine and calcium separation at a compact synchrotron x-ray source.
J Med Imaging (Bellingham). 2020 Mar;7(2):023504. doi: 10.1117/1.JMI.7.2.023504. Epub 2020 Apr 21.
9
Dynamic K-edge Subtraction Fluoroscopy at a Compact Inverse-Compton Synchrotron X-ray Source.
Sci Rep. 2020 Jun 15;10(1):9612. doi: 10.1038/s41598-020-66414-x.
10
Spectroscopic imaging at compact inverse Compton X-ray sources.
Phys Med. 2020 Nov;79:137-144. doi: 10.1016/j.ejmp.2020.11.015. Epub 2020 Nov 30.

引用本文的文献

1
Application of Synchrotron Radiation in Fundamental Research and Clinical Medicine.
Biomedicines. 2025 Jun 10;13(6):1419. doi: 10.3390/biomedicines13061419.
3
Incorporation of Barium Ions into Biomaterials: Dangerous Liaison or Potential Revolution?
Materials (Basel). 2021 Oct 2;14(19):5772. doi: 10.3390/ma14195772.
4
X-ray Spectral Imaging Program: XSIP.
J Synchrotron Radiat. 2020 Nov 1;27(Pt 6):1734-1740. doi: 10.1107/S1600577520010838. Epub 2020 Sep 14.
6
Biodistribution of strontium and barium in the developing and mature skeleton of rats.
J Bone Miner Metab. 2019 May;37(3):385-398. doi: 10.1007/s00774-018-0936-x. Epub 2018 Jun 19.
7
Bone-seeking agents for the treatment of bone disorders.
Drug Deliv Transl Res. 2017 Aug;7(4):466-481. doi: 10.1007/s13346-017-0394-3.

本文引用的文献

1
Discovery of urinary metabolomic biomarkers for early detection of acute kidney injury.
Mol Biosyst. 2016 Jan;12(1):133-44. doi: 10.1039/c5mb00492f.
2
Micro-distribution of uranium in bone after contamination: new insight into its mechanism of accumulation into bone tissue.
Anal Bioanal Chem. 2015 Sep;407(22):6619-25. doi: 10.1007/s00216-015-8835-7. Epub 2015 Jun 18.
4
Spectral K-edge subtraction imaging.
Phys Med Biol. 2014 May 21;59(10):2485-503. doi: 10.1088/0031-9155/59/10/2485. Epub 2014 Apr 28.
5
Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.
Bone. 2013 Nov;57(1):184-93. doi: 10.1016/j.bone.2013.07.038. Epub 2013 Aug 9.
7
Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging.
Phys Med Biol. 2012 Sep 21;57(18):5777-86. doi: 10.1088/0031-9155/57/18/5777. Epub 2012 Sep 5.
9
Structure and quantification of microvascularisation within mouse long bones: what and how should we measure?
Bone. 2012 Jan;50(1):390-9. doi: 10.1016/j.bone.2011.09.051. Epub 2011 Oct 6.
10
Disorders of bone remodeling.
Annu Rev Pathol. 2011;6:121-45. doi: 10.1146/annurev-pathol-011110-130203.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验