Cameron Jamie M, Vilà-Nadal Laia, Winter Ross S, Iijima Fumichika, Murillo Juan Carlos, Rodríguez-Fortea Antonio, Oshio Hiroki, Poblet Josep M, Cronin Leroy
School of Chemistry, WestCHEM, University of Glasgow , Glasgow G12 8QQ, United Kingdom.
Graduate School of Pure and Applied Sciences, Department of Chemistry, University of Tsukuba , Tennodai 1-1-1, Tsukuba 305-8571, Japan.
J Am Chem Soc. 2016 Jul 20;138(28):8765-73. doi: 10.1021/jacs.6b02245. Epub 2016 Jul 7.
The reactions of γ-SiW10O36 represent one of the most important synthetic gateways into a vast array of polyoxotungstate chemistry. Herein, we set about exploring the transformation of the lacunary polyoxoanion β2-SiW11O39 into γ-SiW10O36 using high-resolution electrospray mass spectrometry, density functional theory, and molecular dynamics. We show that the reaction proceeds through an unexpected {SiW9} precursor capable of undertaking a direct β → γ isomerization via a rotational transformation. The remarkably low-energy transition state of this transformation could be identified through theoretical calculations. Moreover, we explore the significant role of the countercations for the first time in such studies. This combination of experimental and the theoretical studies can now be used to understand the complex chemical transformations of oxoanions, leading to the design of reactivity by structural control.
γ-SiW10O36的反应是通向众多多金属氧酸盐化学领域的最重要合成途径之一。在此,我们着手利用高分辨率电喷雾质谱、密度泛函理论和分子动力学探索缺位多氧阴离子β2-SiW11O39向γ-SiW10O36的转变。我们表明该反应通过一个意想不到的{SiW9}前体进行,该前体能够通过旋转转变进行直接的β→γ异构化。通过理论计算可以确定这种转变的极低能量过渡态。此外,我们在这类研究中首次探索了抗衡阳离子的重要作用。实验和理论研究的这种结合现在可用于理解氧阴离子的复杂化学转变,从而通过结构控制来设计反应活性。