WestCHEM, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, UK.
School of Engineering, The University of Glasgow, Glasgow G12 8LT, UK.
Nature. 2014 Nov 27;515(7528):545-9. doi: 10.1038/nature13951. Epub 2014 Nov 19.
Flash memory devices--that is, non-volatile computer storage media that can be electrically erased and reprogrammed--are vital for portable electronics, but the scaling down of metal-oxide-semiconductor (MOS) flash memory to sizes of below ten nanometres per data cell presents challenges. Molecules have been proposed to replace MOS flash memory, but they suffer from low electrical conductivity, high resistance, low device yield, and finite thermal stability, limiting their integration into current MOS technologies. Although great advances have been made in the pursuit of molecule-based flash memory, there are a number of significant barriers to the realization of devices using conventional MOS technologies. Here we show that core-shell polyoxometalate (POM) molecules can act as candidate storage nodes for MOS flash memory. Realistic, industry-standard device simulations validate our approach at the nanometre scale, where the device performance is determined mainly by the number of molecules in the storage media and not by their position. To exploit the nature of the core-shell POM clusters, we show, at both the molecular and device level, that embedding (Se(IV)O3)2 as an oxidizable dopant in the cluster core allows the oxidation of the molecule to a Se(v)2O6 moiety containing a {Se(V)-Se(V)} bond (where curly brackets indicate a moiety, not a molecule) and reveals a new 5+ oxidation state for selenium. This new oxidation state can be observed at the device level, resulting in a new type of memory, which we call 'write-once-erase'. Taken together, these results show that POMs have the potential to be used as a realistic nanoscale flash memory. Also, the configuration of the doped POM core may lead to new types of electrical behaviour. This work suggests a route to the practical integration of configurable molecules in MOS technologies as the lithographic scales approach the molecular limit.
闪存设备——即电可擦可编程的非易失性计算机存储介质——对便携式电子产品至关重要,但将金属氧化物半导体 (MOS) 闪存缩小到每个数据单元小于 10 纳米的尺寸会带来挑战。已经提出了分子来替代 MOS 闪存,但它们存在电导率低、电阻高、器件产量低和有限的热稳定性等问题,限制了它们在当前 MOS 技术中的集成。尽管在追求基于分子的闪存方面取得了重大进展,但在使用传统 MOS 技术实现器件方面仍存在许多重大障碍。在这里,我们展示了核壳多金属氧酸盐 (POM) 分子可以作为 MOS 闪存的候选存储节点。现实的、行业标准的器件模拟在纳米尺度上验证了我们的方法,其中器件性能主要取决于存储介质中的分子数量,而不是它们的位置。为了利用核壳 POM 簇的性质,我们在分子和器件两个层面上都表明,在簇核中嵌入 (Se(IV)O3)2 作为可氧化掺杂剂,可以将分子氧化为含有 {Se(V)-Se(V)} 键的 Se(v)2O6 部分(其中花括号表示部分,而不是分子),并揭示了硒的新 5+氧化态。这种新的氧化态可以在器件层面上观察到,导致了一种新的存储类型,我们称之为“一次写入擦除”。总之,这些结果表明 POM 具有作为一种现实的纳米级闪存的潜力。此外,掺杂 POM 核的构型可能导致新的电行为类型。这项工作表明,随着光刻尺度接近分子极限,在 MOS 技术中实际集成可配置分子的途径。