Rüttiger Ann-Sophie, Ryan Daniel, Spiga Luisella, Lamm-Schmidt Vanessa, Prezza Gianluca, Reichardt Sarah, Langford Madison, Barquist Lars, Faber Franziska, Zhu Wenhan, Westermann Alexander J
Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany.
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany.
Nat Commun. 2025 Jan 2;16(1):208. doi: 10.1038/s41467-024-55383-8.
Paramount to human health, symbiotic bacteria in the gastrointestinal tract rely on the breakdown of complex polysaccharides to thrive in this sugar-deprived environment. Gut Bacteroides are metabolic generalists and deploy dozens of polysaccharide utilization loci (PULs) to forage diverse dietary and host-derived glycans. The expression of the multi-protein PUL complexes is tightly regulated at the transcriptional level. However, how PULs are orchestrated at translational level in response to the fluctuating levels of their cognate substrates is unknown. Here, we identify the RNA-binding protein RbpB and a family of noncoding RNAs as key players in post-transcriptional PUL regulation. We demonstrate that RbpB interacts with numerous cellular transcripts, including a paralogous noncoding RNA family comprised of 14 members, the FopS (family of paralogous sRNAs). Through a series of in-vitro and in-vivo assays, we reveal that FopS sRNAs repress the translation of SusC-like glycan transporters when substrates are limited-an effect antagonized by RbpB. Ablation of RbpB in Bacteroides thetaiotaomicron compromises colonization in the mouse gut in a diet-dependent manner. Together, this study adds to our understanding of RNA-coordinated metabolic control as an important factor contributing to the in-vivo fitness of predominant microbiota species in dynamic nutrient landscapes.
对于人类健康至关重要的是,胃肠道中的共生细菌依靠复杂多糖的分解在这种缺乏糖分的环境中生存。肠道拟杆菌是代谢通才,它们利用数十个多糖利用位点(PULs)来摄取各种饮食来源和宿主来源的聚糖。多蛋白PUL复合物的表达在转录水平受到严格调控。然而,PULs如何在翻译水平上根据其同源底物水平的波动进行协调尚不清楚。在这里,我们确定RNA结合蛋白RbpB和一个非编码RNA家族是转录后PUL调控的关键参与者。我们证明RbpB与许多细胞转录本相互作用,包括一个由14个成员组成的同源非编码RNA家族,即FopS(同源sRNA家族)。通过一系列体外和体内实验,我们发现当底物有限时,FopS sRNAs会抑制SusC样聚糖转运蛋白的翻译——这种作用会被RbpB拮抗。在鼠双歧杆菌中敲除RbpB会以饮食依赖的方式损害其在小鼠肠道中的定殖。总之,这项研究加深了我们对RNA协调代谢控制的理解,它是在动态营养环境中影响主要微生物群落物种体内适应性的一个重要因素。