Suppr超能文献

电沉积壳聚糖和壳聚糖-碳纳米管管状植入物的降解和生物相容性评估。

Assessment of degradation and biocompatibility of electrodeposited chitosan and chitosan-carbon nanotube tubular implants.

机构信息

Department of Process Thermodynamics, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924, Lodz, Poland.

Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Mouvement (UMR 7287), Equipe Plasticité des Systèmes Nerveux et Musculaire, Parc Scientifique et Technologique de Luminy, CC910 - 163, Avenue de Luminy, F-13288, Marseille cedex 09, France.

出版信息

J Biomed Mater Res A. 2016 Nov;104(11):2701-11. doi: 10.1002/jbm.a.35812. Epub 2016 Jul 5.

Abstract

Designing three-dimensional tubular materials made of chitosan is still a challenging task. Availability of such forms is highly desired by tissue engineering, especially peripheral nerve tissue engineering. Aiming at this problem, we use an electrodeposition phenomenon in order to obtain chitosan and chitosan-carbon nanotube hydrogel tubular implants. The in vitro biocompatibility of the fabricated structures is assessed using a mouse hippocampal cell line (mHippoE-18). As both implants do not induce significant cytotoxicity, they are next subjected to in vitro degradation studies in the environment simulating in vivo conditions for specified periods of time: 7, 14, and 28 days. The mass loss of implants indicates their stability at the tested time period; therefore, the materials are subcutaneously implanted in Sprague Dawley rats. The explants are collected after 7, 14, and 28 days. The assessment of composition and changes in tissues surrounding the implanted materials is made in respect to surrounding tissue thickness as well as the number of blood vessels, macrophages, lymphocytes, and neutrophils. No symptoms of acute inflammation are noticed at any point in time. The observed regular healing process allows concluding that both chitosan and chitosan-carbon hydrogel tubular implants are biocompatible with high application potential in tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2701-2711, 2016.

摘要

设计由壳聚糖制成的三维管状材料仍然是一项具有挑战性的任务。组织工程,特别是周围神经组织工程,非常需要这种形式的材料。针对这个问题,我们利用电沉积现象来获得壳聚糖和壳聚糖-碳纳米管水凝胶管状植入物。使用小鼠海马细胞系(mHippoE-18)评估所制备结构的体外生物相容性。由于两种植入物均不会引起明显的细胞毒性,因此接下来将它们在模拟体内条件的环境中进行体外降解研究,时间为 7、14 和 28 天。植入物的质量损失表明它们在测试时间段内的稳定性;因此,将这些材料皮下植入 Sprague Dawley 大鼠体内。在第 7、14 和 28 天收集样本。评估植入物周围组织的组成和变化,以了解周围组织厚度以及血管、巨噬细胞、淋巴细胞和中性粒细胞的数量。在任何时间点都没有注意到急性炎症的症状。观察到的正常愈合过程表明,壳聚糖和壳聚糖-碳水凝胶管状植入物均具有生物相容性,在组织工程中有很高的应用潜力。 © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2701-2711, 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验