Suppr超能文献

原子级探究 B-N 共掺杂结构及其对石墨烯的电子效应。

Atomistic Interrogation of B-N Co-dopant Structures and Their Electronic Effects in Graphene.

机构信息

Department of Science and Mathematics, Fashion Institute of Technology/State University of New York , New York, New York 10001, United States.

Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States.

出版信息

ACS Nano. 2016 Jul 26;10(7):6574-84. doi: 10.1021/acsnano.6b01318. Epub 2016 Jun 24.

Abstract

Chemical doping has been demonstrated to be an effective method for producing high-quality, large-area graphene with controlled carrier concentrations and an atomically tailored work function. The emergent optoelectronic properties and surface reactivity of carbon nanostructures are dictated by the microstructure of atomic dopants. Co-doping of graphene with boron and nitrogen offers the possibility to further tune the electronic properties of graphene at the atomic level, potentially creating p- and n-type domains in a single carbon sheet, opening a gap between valence and conduction bands in the 2-D semimetal. Using a suite of high-resolution synchrotron-based X-ray techniques, scanning tunneling microscopy, and density functional theory based computation we visualize and characterize B-N dopant bond structures and their electronic effects at the atomic level in single-layer graphene grown on a copper substrate. We find there is a thermodynamic driving force for B and N atoms to cluster into BNC structures in graphene, rather than randomly distribute into isolated B and N graphitic dopants, although under the present growth conditions, kinetics limit segregation of large B-N domains. We observe that the doping effect of these BNC structures, which open a small band gap in graphene, follows the B:N ratio (B > N, p-type; B < N, n-type; B═N, neutral). We attribute this to the comparable electron-withdrawing and -donating effects, respectively, of individual graphitic B and N dopants, although local electrostatics also play a role in the work function change.

摘要

化学掺杂被证明是一种有效的方法,可以生产出具有可控载流子浓度和原子级调制功函数的高质量、大面积石墨烯。碳纳米结构的新兴光电特性和表面反应性由原子掺杂剂的微结构决定。硼和氮共掺杂石墨烯有可能在原子水平上进一步调整石墨烯的电子特性,有可能在单层碳片中形成 p 型和 n 型畴,在 2-D 半导体中打开价带和导带之间的间隙。我们使用一系列高分辨率基于同步加速器的 X 射线技术、扫描隧道显微镜和基于密度泛函理论的计算,在铜衬底上生长的单层石墨烯中,在原子水平上可视化和表征 B-N 掺杂键结构及其电子效应。我们发现,在热力学驱动力的作用下,B 和 N 原子倾向于在石墨烯中形成 BNC 结构,而不是随机分布成孤立的 B 和 N 石墨掺杂剂,尽管在目前的生长条件下,动力学限制了大 B-N 畴的分离。我们观察到,这些 BNC 结构的掺杂效应(在石墨烯中打开一个小带隙)遵循 B:N 比(B>N,p 型;B<N,n 型;B=N,中性)。我们将其归因于单个石墨 B 和 N 掺杂剂的分别吸电子和供电子效应,尽管局部静电也在功函数变化中起作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验