Ding Jieting, Wang Hao-Fan, Yang Xianfeng, Ju Wenbo, Shen Kui, Chen Liyu, Li Yingwei
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
Analytical and Testing Centre, South China University of Technology, Guangzhou 510640, China.
Natl Sci Rev. 2022 Oct 21;10(3):nwac231. doi: 10.1093/nsr/nwac231. eCollection 2023 Mar.
The trade-off between the intrinsic activity and electronic conductivity of carbon materials is a major barrier for electrocatalysis. We report a Janus-type carbon material combining electrically conductive nitrogen-doped carbon (NC) and catalytically active boron, nitrogen co-doped carbon (BNC). The integration of NC with BNC can not only ensure high electronic conductivity of the hybrid, but also achieve an enhancement in the intrinsic activity of the BNC side due to the electron redistribution on their coupling interfaces. In the electrocatalytic hydrazine oxidation reaction (HzOR), the Janus carbon electrocatalyst exhibits superior activity than their single counterparts and simple physical mixtures. Density functional theory calculations reveal that the NC/BNC interfaces simultaneously promote efficient electron transport and decrease the free energy of the rate-determining step in the HzOR process.
碳材料本征活性与电子导电性之间的权衡是电催化的一个主要障碍。我们报道了一种兼具导电氮掺杂碳(NC)和催化活性硼、氮共掺杂碳(BNC)的双面型碳材料。NC与BNC的结合不仅能确保复合材料具有高电子导电性,还能由于其耦合界面上的电子重新分布,提高BNC一侧的本征活性。在电催化肼氧化反应(HzOR)中,双面碳电催化剂表现出比其单一对应物和简单物理混合物更优异的活性。密度泛函理论计算表明,NC/BNC界面同时促进了高效的电子传输,并降低了HzOR过程中速率决定步骤的自由能。