Department of Physics, Columbia University , New York, New York 10027, United States.
Nano Lett. 2013 Oct 9;13(10):4659-65. doi: 10.1021/nl401781d. Epub 2013 Sep 16.
We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film.
我们使用扫描隧道显微镜和 X 射线能谱来表征通过化学气相沉积在铜衬底上制备的硼掺杂和氮掺杂石墨烯的原子和电子结构。微观测量表明,硼与氮一样,主要以石墨形式掺入碳晶格中,每个掺杂剂向石墨烯片贡献约 0.5 个载流子。密度泛函理论计算表明,硼掺杂剂与基底铜强烈相互作用,而氮掺杂剂则没有。石墨状硼和氮掺杂剂之间的局部键合差异导致掺杂剂分布的大规模差异。硼的掺杂剂分布观察到是完全随机的,而氮则表现出强烈的亚晶格聚类。在结构上,氮掺杂石墨烯相对无缺陷,而硼掺杂石墨烯膜显示出大量的 Stone-Wales 缺陷。这些缺陷会产生局部电子共振并引起电子散射,但不会对石墨烯膜进行电子掺杂。