Suppr超能文献

二模有序数据的双聚类模型

Biclustering Models for Two-Mode Ordinal Data.

作者信息

Matechou Eleni, Liu Ivy, Fernández Daniel, Farias Miguel, Gjelsvik Bergljot

机构信息

School of Mathematics, Statistics and Actuarial Science, University of Kent, Cornwallis Building, Canterbury, CT2 7NF , UK.

School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand.

出版信息

Psychometrika. 2016 Sep;81(3):611-24. doi: 10.1007/s11336-016-9503-3. Epub 2016 Jun 21.

Abstract

The work in this paper introduces finite mixture models that can be used to simultaneously cluster the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert scale responses. We use the popular proportional odds parameterisation and propose models which provide insights into major patterns in the data. Model-fitting is performed using the EM algorithm, and a fuzzy allocation of rows and columns to corresponding clusters is obtained. The clustering ability of the models is evaluated in a simulation study and demonstrated using two real data sets.

摘要

本文的工作介绍了有限混合模型,该模型可用于同时对双模式有序分类响应数据的行和列进行聚类,比如李克特量表响应所产生的数据。我们使用了流行的比例优势参数化方法,并提出了能深入了解数据主要模式的模型。使用期望最大化(EM)算法进行模型拟合,并得到行和列到相应聚类的模糊分配。在模拟研究中评估了模型的聚类能力,并使用两个真实数据集进行了演示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fb4/4978779/25738c303704/11336_2016_9503_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验