Suppr超能文献

HcZrt2是一种锌反应基因,对荚膜组织胞浆菌在体内的存活至关重要。

HcZrt2, a zinc responsive gene, is indispensable for the survival of Histoplasma capsulatum in vivo.

作者信息

Dade Jessica, DuBois Juwen C, Pasula Rajamouli, Donnell Anna M, Caruso Joseph A, Smulian A George, Deepe George S

机构信息

Department of Molecular Genetics, Biochemistry and Microbiology.

Department of Internal Medicine, Division of Infectious Diseases.

出版信息

Med Mycol. 2016 Nov 1;54(8):865-75. doi: 10.1093/mmy/myw045. Epub 2016 Jun 22.

Abstract

Histoplasma capsulatum (Hc) exists in the soil and is capable of adapting to the shift in environment during infection to ensure survival. Yeast encounter a restrictive host environment low in nutrients such as zinc. In this study we functionally analyzed a putative zinc regulated transporter, HcZrt2, in zinc limiting conditions by complementation of HcZrt2 and gene knockdown through RNA interference (RNAi). Complementation analysis demonstrated HcZrt2's ability to functionally replace the characterized Saccharomyces cerevisiae zinc plasma membrane transporters Zrt1 and Zrt2 in zinc deficient medium. Gene silencing revealed that HcZrt2 is essential for growth in zinc deficient medium and plays a role in zinc accumulation. Fungal burden was reduced in mice infected with HcZrt2 silenced strains compared to a control strain. Sixty-seven percent of mice infected with a lethal dose of HcZrt2-RNAi#1 survived, and 100% of mice infected with HcZrt2-RNAi#2 withstood lethal infection. Our data suggest that HcZrt2 is a vital part of zinc homeostasis and essential for the pathogenesis of histoplasmosis.

摘要

荚膜组织胞浆菌(Hc)存在于土壤中,并且能够在感染期间适应环境变化以确保存活。酵母会遇到营养物质(如锌)含量低的限制性宿主环境。在本研究中,我们通过补充HcZrt2并利用RNA干扰(RNAi)敲低基因,在锌限制条件下对一种假定的锌调节转运蛋白HcZrt2进行了功能分析。互补分析表明,HcZrt2能够在缺锌培养基中功能性替代已鉴定的酿酒酵母锌质膜转运蛋白Zrt1和Zrt2。基因沉默表明,HcZrt2对于在缺锌培养基中的生长至关重要,并且在锌积累中发挥作用。与对照菌株相比,感染HcZrt2沉默菌株的小鼠体内真菌负荷降低。感染致死剂量HcZrt2 - RNAi#1的小鼠中有67%存活,感染HcZrt2 - RNAi#2的小鼠中有100%抵抗了致死性感染。我们的数据表明,HcZrt2是锌稳态的重要组成部分,对组织胞浆菌病的发病机制至关重要。

相似文献

1
HcZrt2, a zinc responsive gene, is indispensable for the survival of Histoplasma capsulatum in vivo.
Med Mycol. 2016 Nov 1;54(8):865-75. doi: 10.1093/mmy/myw045. Epub 2016 Jun 22.
2
Utilization of a zinc reporter reveals the complexities of fungal sensing of metal deprivation.
mSphere. 2024 Feb 28;9(2):e0070423. doi: 10.1128/msphere.00704-23. Epub 2024 Jan 23.
3
Histoplasma capsulatum utilizes siderophores for intracellular iron acquisition in macrophages.
Med Mycol. 2011 Aug;49(6):633-42. doi: 10.3109/13693786.2011.558930. Epub 2011 Feb 22.
5
Characterization of the APSES-family transcriptional regulators of Histoplasma capsulatum.
FEMS Yeast Res. 2018 Dec 1;18(8). doi: 10.1093/femsyr/foy087.
7
RNA interference-mediated silencing of the YPS3 gene of Histoplasma capsulatum reveals virulence defects.
Infect Immun. 2007 Jun;75(6):2811-7. doi: 10.1128/IAI.00304-07. Epub 2007 Apr 2.
8
VEA1 is required for cleistothecial formation and virulence in Histoplasma capsulatum.
Fungal Genet Biol. 2012 Oct;49(10):838-46. doi: 10.1016/j.fgb.2012.07.001. Epub 2012 Jul 24.
9
Intracellular parasitism by Histoplasma capsulatum: fungal virulence and calcium dependence.
Science. 2000 Nov 17;290(5495):1368-72. doi: 10.1126/science.290.5495.1368.
10
Yeast Transcriptome and In Vivo Hypoxia Detection Reveals Histoplasma capsulatum Response to Low Oxygen Tension.
Med Mycol. 2016 Jan;54(1):40-58. doi: 10.1093/mmy/myv073. Epub 2015 Oct 18.

引用本文的文献

1
Elevated carbon dioxide enhances the growth and reduces the antifungal susceptibility of .
Microbiol Spectr. 2025 Jul;13(7):e0310624. doi: 10.1128/spectrum.03106-24. Epub 2025 May 30.
2
Three transporters, including the novel Gai1 permease, drive amino acid uptake in yeasts.
Virulence. 2024 Dec;15(1):2438750. doi: 10.1080/21505594.2024.2438750. Epub 2024 Dec 9.
3
The pathobiology of human fungal infections.
Nat Rev Microbiol. 2024 Nov;22(11):687-704. doi: 10.1038/s41579-024-01062-w. Epub 2024 Jun 25.
4
Genotypic diversity, virulence, and molecular genetic tools in .
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0007623. doi: 10.1128/mmbr.00076-23. Epub 2024 May 31.
5
Influence of Zinc on Planktonic and Biofilm Cells.
J Fungi (Basel). 2024 May 20;10(5):361. doi: 10.3390/jof10050361.
6
Zinc Starvation Induces Cell Wall Remodeling and Activates the Antioxidant Defense System in .
J Fungi (Basel). 2024 Jan 31;10(2):118. doi: 10.3390/jof10020118.
7
A novel zinc-chelating compound has antifungal activity against a wide range of species, including multidrug-resistant .
JAC Antimicrob Resist. 2024 Feb 21;6(1):dlad155. doi: 10.1093/jacamr/dlad155. eCollection 2024 Feb.
8
Utilization of a zinc reporter reveals the complexities of fungal sensing of metal deprivation.
mSphere. 2024 Feb 28;9(2):e0070423. doi: 10.1128/msphere.00704-23. Epub 2024 Jan 23.
9
How metals fuel fungal virulence, yet promote anti-fungal immunity.
Dis Model Mech. 2023 Oct 1;16(10). doi: 10.1242/dmm.050393. Epub 2023 Oct 31.
10
Fungal mechanisms of intracellular survival: what can we learn from bacterial pathogens?
Infect Immun. 2023 Sep 14;91(9):e0043422. doi: 10.1128/iai.00434-22. Epub 2023 Jul 28.

本文引用的文献

1
Effects of zinc transporters on Cryptococcus gattii virulence.
Sci Rep. 2015 May 7;5:10104. doi: 10.1038/srep10104.
3
Zap1 regulates zinc homeostasis and modulates virulence in Cryptococcus gattii.
PLoS One. 2012;7(8):e43773. doi: 10.1371/journal.pone.0043773. Epub 2012 Aug 20.
4
Candida albicans scavenges host zinc via Pra1 during endothelial invasion.
PLoS Pathog. 2012;8(6):e1002777. doi: 10.1371/journal.ppat.1002777. Epub 2012 Jun 28.
5
High-throughput screen for identifying small molecules that target fungal zinc homeostasis.
PLoS One. 2011;6(9):e25136. doi: 10.1371/journal.pone.0025136. Epub 2011 Sep 29.
6
The role of cytokines and chemokines in Histoplasma capsulatum infection.
Cytokine. 2012 Apr;58(1):112-7. doi: 10.1016/j.cyto.2011.07.430. Epub 2011 Aug 26.
7
Zinc homeostasis and signaling in health and diseases: Zinc signaling.
J Biol Inorg Chem. 2011 Oct;16(7):1123-34. doi: 10.1007/s00775-011-0797-4. Epub 2011 Jun 10.
9
Histoplasma capsulatum secreted gamma-glutamyltransferase reduces iron by generating an efficient ferric reductant.
Mol Microbiol. 2008 Oct;70(2):352-68. doi: 10.1111/j.1365-2958.2008.06410.x. Epub 2008 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验