Niland Courtney N, Zhao Jing, Lin Hsuan-Chun, Anderson David R, Jankowsky Eckhard, Harris Michael E
Department of Biochemistry, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States.
School of Business, CUNY Baruch College , New York, New York 10010, United States.
ACS Chem Biol. 2016 Aug 19;11(8):2285-92. doi: 10.1021/acschembio.6b00275. Epub 2016 Jun 23.
Maturation of tRNA depends on a single endonuclease, ribonuclease P (RNase P), to remove highly variable 5' leader sequences from precursor tRNA transcripts. Here, we use high-throughput enzymology to report multiple-turnover and single-turnover kinetics for Escherichia coli RNase P processing of all possible 5' leader sequences, including nucleotides contacting both the RNA and protein subunits of RNase P. The results reveal that the identity of N(-2) and N(-3) relative to the cleavage site at N(1) primarily control alternative substrate selection and act at the level of association not the cleavage step. As a consequence, the specificity for N(-1), which contacts the active site and contributes to catalysis, is suppressed. This study demonstrates high-throughput RNA enzymology as a means to globally determine RNA specificity landscapes and reveals the mechanism of substrate discrimination by a widespread and essential RNA-processing enzyme.
转运RNA(tRNA)的成熟依赖于一种单一的核酸内切酶——核糖核酸酶P(RNase P),以从前体tRNA转录本中去除高度可变的5'前导序列。在此,我们利用高通量酶学方法报道了大肠杆菌RNase P对所有可能的5'前导序列进行多次周转和单次周转动力学的情况,这些序列包括与RNase P的RNA和蛋白质亚基都接触的核苷酸。结果表明,相对于N(1)处的切割位点,N(-2)和N(-3)的身份主要控制着替代底物的选择,并且作用于结合水平而非切割步骤。因此,与活性位点接触并有助于催化的N(-1)的特异性受到抑制。这项研究证明了高通量RNA酶学作为一种全局确定RNA特异性图谱的手段,并揭示了一种广泛存在且必不可少的RNA加工酶对底物进行识别的机制。