Suppr超能文献

通过高通量测序绘制RNA-蛋白质相互作用的特异性图谱。

Mapping specificity landscapes of RNA-protein interactions by high throughput sequencing.

作者信息

Jankowsky Eckhard, Harris Michael E

机构信息

Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, 1099 Euclid Ave Cleveland, OH 44106, United States; Department of Biochemistry, School of Medicine, Case Western Reserve University, 1099 Euclid Ave Cleveland, OH 44106, United States.

Department of Biochemistry, School of Medicine, Case Western Reserve University, 1099 Euclid Ave Cleveland, OH 44106, United States.

出版信息

Methods. 2017 Apr 15;118-119:111-118. doi: 10.1016/j.ymeth.2017.03.002. Epub 2017 Mar 2.

Abstract

To function in a biological setting, RNA binding proteins (RBPs) have to discriminate between alternative binding sites in RNAs. This discrimination can occur in the ground state of an RNA-protein binding reaction, in its transition state, or in both. The extent by which RBPs discriminate at these reaction states defines RBP specificity landscapes. Here, we describe the HiTS-Kin and HiTS-EQ techniques, which combine kinetic and equilibrium binding experiments with high throughput sequencing to quantitatively assess substrate discrimination for large numbers of substrate variants at ground and transition states of RNA-protein binding reactions. We discuss experimental design, practical considerations and data analysis and outline how a combination of HiTS-Kin and HiTS-EQ allows the mapping of RBP specificity landscapes.

摘要

为了在生物环境中发挥作用,RNA结合蛋白(RBP)必须区分RNA中的不同结合位点。这种区分可以发生在RNA-蛋白质结合反应的基态、过渡态或两者之中。RBP在这些反应状态下的区分程度定义了RBP特异性图谱。在这里,我们描述了HiTS-Kin和HiTS-EQ技术,它们将动力学和平衡结合实验与高通量测序相结合,以定量评估RNA-蛋白质结合反应基态和过渡态下大量底物变体的底物区分情况。我们讨论了实验设计、实际考虑因素和数据分析,并概述了HiTS-Kin和HiTS-EQ的组合如何实现RBP特异性图谱的绘制。

相似文献

1
Mapping specificity landscapes of RNA-protein interactions by high throughput sequencing.
Methods. 2017 Apr 15;118-119:111-118. doi: 10.1016/j.ymeth.2017.03.002. Epub 2017 Mar 2.
3
RNA interactome capture in yeast.
Methods. 2017 Apr 15;118-119:82-92. doi: 10.1016/j.ymeth.2016.12.008. Epub 2016 Dec 16.
4
DO-RIP-seq to quantify RNA binding sites transcriptome-wide.
Methods. 2017 Apr 15;118-119:16-23. doi: 10.1016/j.ymeth.2016.11.004. Epub 2016 Nov 10.
5
Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins.
Methods. 2017 Apr 15;118-119:24-40. doi: 10.1016/j.ymeth.2016.10.007. Epub 2016 Oct 17.
6
RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
Methods Enzymol. 2015;558:465-493. doi: 10.1016/bs.mie.2015.02.007. Epub 2015 May 12.
7
Cross-linking and immunoprecipitation of nuclear RNA-binding proteins.
Methods Mol Biol. 2015;1262:247-63. doi: 10.1007/978-1-4939-2253-6_15.
8
Computational analysis of CLIP-seq data.
Methods. 2017 Apr 15;118-119:60-72. doi: 10.1016/j.ymeth.2017.02.006. Epub 2017 Feb 22.
9
Computational Analysis of RNA-Protein Interactions via Deep Sequencing.
Methods Mol Biol. 2018;1751:171-182. doi: 10.1007/978-1-4939-7710-9_12.
10
Specificity and nonspecificity in RNA-protein interactions.
Nat Rev Mol Cell Biol. 2015 Sep;16(9):533-44. doi: 10.1038/nrm4032. Epub 2015 Aug 19.

引用本文的文献

3
High throughput approaches to study RNA-protein interactions in vitro.
Methods. 2020 Jun 1;178:3-10. doi: 10.1016/j.ymeth.2019.09.006. Epub 2019 Sep 5.
4
Approaches for measuring the dynamics of RNA-protein interactions.
Wiley Interdiscip Rev RNA. 2020 Jan;11(1):e1565. doi: 10.1002/wrna.1565. Epub 2019 Aug 20.
5
A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins.
Mol Cell. 2019 Jun 6;74(5):966-981.e18. doi: 10.1016/j.molcel.2019.04.012. Epub 2019 May 8.
6
Linking RNA Sequence, Structure, and Function on Massively Parallel High-Throughput Sequencers.
Cold Spring Harb Perspect Biol. 2019 Oct 1;11(10):a032300. doi: 10.1101/cshperspect.a032300.

本文引用的文献

1
Single-cell sequencing of the small-RNA transcriptome.
Nat Biotechnol. 2016 Dec;34(12):1264-1266. doi: 10.1038/nbt.3701. Epub 2016 Oct 31.
2
Analysis of the RNA Binding Specificity Landscape of C5 Protein Reveals Structure and Sequence Preferences that Direct RNase P Specificity.
Cell Chem Biol. 2016 Oct 20;23(10):1271-1281. doi: 10.1016/j.chembiol.2016.09.002. Epub 2016 Sep 29.
3
Determination of the Specificity Landscape for Ribonuclease P Processing of Precursor tRNA 5' Leader Sequences.
ACS Chem Biol. 2016 Aug 19;11(8):2285-92. doi: 10.1021/acschembio.6b00275. Epub 2016 Jun 23.
4
Determinants of affinity and specificity in RNA-binding proteins.
Curr Opin Struct Biol. 2016 Jun;38:83-91. doi: 10.1016/j.sbi.2016.05.005. Epub 2016 Jun 14.
5
Optimization of high-throughput sequencing kinetics for determining enzymatic rate constants of thousands of RNA substrates.
Anal Biochem. 2016 Oct 1;510:1-10. doi: 10.1016/j.ab.2016.06.004. Epub 2016 Jun 11.
6
Specificity and nonspecificity in RNA-protein interactions.
Nat Rev Mol Cell Biol. 2015 Sep;16(9):533-44. doi: 10.1038/nrm4032. Epub 2015 Aug 19.
7
A census of human RNA-binding proteins.
Nat Rev Genet. 2014 Dec;15(12):829-45. doi: 10.1038/nrg3813. Epub 2014 Nov 4.
8
Determination of relative rate constants for in vitro RNA processing reactions by internal competition.
Anal Biochem. 2014 Dec 15;467:54-61. doi: 10.1016/j.ab.2014.08.022. Epub 2014 Aug 28.
9
Modeling the specificity of protein-DNA interactions.
Quant Biol. 2013 Jun;1(2):115-130. doi: 10.1007/s40484-013-0012-4.
10
RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins.
Mol Cell. 2014 Jun 5;54(5):887-900. doi: 10.1016/j.molcel.2014.04.016. Epub 2014 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验