Suppr超能文献

风险计算器能否准确预测手术部位感染?

Do risk calculators accurately predict surgical site occurrences?

作者信息

Mitchell Thomas O, Holihan Julie L, Askenasy Erik P, Greenberg Jacob A, Keith Jerrod N, Martindale Robert G, Roth John Scott, Liang Mike K

机构信息

Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas.

Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas.

出版信息

J Surg Res. 2016 Jun 1;203(1):56-63. doi: 10.1016/j.jss.2016.03.040. Epub 2016 Mar 26.

Abstract

INTRODUCTION

Current risk assessment models for surgical site occurrence (SSO) and surgical site infection (SSI) after open ventral hernia repair (VHR) have limited external validation. Our aim was to determine (1) whether existing models stratify patients into groups by risk and (2) which model best predicts the rate of SSO and SSI.

METHODS

Patients who underwent open VHR and were followed for at least 1 mo were included. Using two data sets-a retrospective multicenter database (Ventral Hernia Outcomes Collaborative) and a single-center prospective database (Prospective)-each patient was assigned a predicted risk with each of the following models: Ventral Hernia Risk Score (VHRS), Ventral Hernia Working Group (VHWG), Centers for Disease Control and Prevention Wound Class, and Hernia Wound Risk Assessment Tool (HW-RAT). Patients in the Prospective database were also assigned a predicted risk from the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP). Areas under the receiver operating characteristic curve (area under the curve [AUC]) were compared to assess the predictive accuracy of the models for SSO and SSI. Pearson's chi-square was used to determine which models were able to risk-stratify patients into groups with significantly differing rates of actual SSO and SSI.

RESULTS

The Ventral Hernia Outcomes Collaborative database (n = 795) had an overall SSO and SSI rate of 23% and 17%, respectively. The AUCs were low for SSO (0.56, 0.54, 0.52, and 0.60) and SSI (0.55, 0.53, 0.50, and 0.58). The VHRS (P = 0.01) and HW-RAT (P < 0.01) significantly stratified patients into tiers for SSO, whereas the VHWG (P < 0.05) and HW-RAT (P < 0.05) stratified for SSI. In the Prospective database (n = 88), 14% and 8% developed an SSO and SSI, respectively. The AUCs were low for SSO (0.63, 0.54, 0.50, 0.57, and 0.69) and modest for SSI (0.81, 0.64, 0.55, 0.62, and 0.73). The ACS-NSQIP (P < 0.01) stratified for SSO, whereas the VHRS (P < 0.01) and ACS-NSQIP (P < 0.05) stratified for SSI. In both databases, VHRS, VHWG, and Centers for Disease Control and Prevention overestimated risk of SSO and SSI, whereas HW-RAT and ACS-NSQIP underestimated risk for all groups.

CONCLUSIONS

All five existing predictive models have limited ability to risk-stratify patients and accurately assess risk of SSO. However, both the VHRS and ACS-NSQIP demonstrate modest success in identifying patients at risk for SSI. Continued model refinement is needed to improve the two highest performing models (VHRS and ACS-NSQIP) along with investigation to determine whether modifications to perioperative management based on risk stratification can improve outcomes.

摘要

引言

目前用于开放性腹疝修补术(VHR)后手术部位事件(SSO)和手术部位感染(SSI)的风险评估模型的外部验证有限。我们的目的是确定:(1)现有模型是否能根据风险将患者分层;(2)哪种模型能最好地预测SSO和SSI的发生率。

方法

纳入接受开放性VHR且随访至少1个月的患者。使用两个数据集——一个回顾性多中心数据库(腹疝结局协作组)和一个单中心前瞻性数据库(前瞻性研究)——分别用以下模型为每位患者分配预测风险:腹疝风险评分(VHRS)、腹疝工作组(VHWG)、疾病控制和预防中心伤口分类以及疝伤口风险评估工具(HW-RAT)。前瞻性数据库中的患者还被分配了美国外科医师学会国家外科质量改进计划(ACS-NSQIP)的预测风险。比较受试者工作特征曲线下面积(曲线下面积[AUC]),以评估模型对SSO和SSI的预测准确性。使用Pearson卡方检验确定哪些模型能够根据风险将患者分层为实际SSO和SSI发生率显著不同的组。

结果

腹疝结局协作组数据库(n = 795)的总体SSO和SSI发生率分别为23%和17%。SSO的AUC较低(0.56、0.54、0.52和0.60),SSI的AUC也较低(0.55、0.53、0.50和0.58)。VHRS(P = 0.01)和HW-RAT(P < 0.01)能将患者显著分层为不同的SSO层级,而VHWG(P < 0.05)和HW-RAT(P < 0.05)能将患者分层为不同的SSI层级。在前瞻性数据库(n = 88)中,SSO和SSI的发生率分别为14%和8%。SSO的AUC较低(0.63、0.54、0.50、0.57和0.69),SSI的AUC中等(0.81、0.64、0.55、0.62和0.73)。ACS-NSQIP(P < 0.01)能将患者分层为不同的SSO层级,而VHRS(P < 0.01)和ACS-NSQIP(P < 0.05)能将患者分层为不同的SSI层级。在两个数据库中,VHRS、VHWG和疾病控制和预防中心均高估了SSO和SSI的风险,而HW-RAT和ACS-NSQIP低估了所有组的风险。

结论

所有五个现有的预测模型在根据风险对患者分层以及准确评估SSO风险方面能力有限。然而,VHRS和ACS-NSQIP在识别有SSI风险的患者方面都取得了一定成功。需要继续改进模型,以优化表现最佳的两个模型(VHRS和ACS-NSQIP),并开展研究以确定基于风险分层对围手术期管理进行调整是否能改善结局。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验