Suppr超能文献

使用组合评分方法对GPCR配体进行功能特异性虚拟筛选。

Function-specific virtual screening for GPCR ligands using a combined scoring method.

作者信息

Kooistra Albert J, Vischer Henry F, McNaught-Flores Daniel, Leurs Rob, de Esch Iwan J P, de Graaf Chris

机构信息

Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.

出版信息

Sci Rep. 2016 Jun 24;6:28288. doi: 10.1038/srep28288.

Abstract

The ability of scoring functions to correctly select and rank docking poses of small molecules in protein binding sites is highly target dependent, which presents a challenge for structure-based drug discovery. Here we describe a virtual screening method that combines an energy-based docking scoring function with a molecular interaction fingerprint (IFP) to identify new ligands based on G protein-coupled receptor (GPCR) crystal structures. The consensus scoring method is prospectively evaluated by: 1) the discovery of chemically novel, fragment-like, high affinity histamine H1 receptor (H1R) antagonists/inverse agonists, 2) the selective structure-based identification of ß2-adrenoceptor (ß2R) agonists, and 3) the experimental validation and comparison of the combined and individual scoring approaches. Systematic retrospective virtual screening simulations allowed the definition of scoring cut-offs for the identification of H1R and ß2R ligands and the selection of an optimal ß-adrenoceptor crystal structure for the discrimination between ß2R agonists and antagonists. The consensus approach resulted in the experimental validation of 53% of the ß2R and 73% of the H1R virtual screening hits with up to nanomolar affinities and potencies. The selective identification of ß2R agonists shows the possibilities of structure-based prediction of GPCR ligand function by integrating protein-ligand binding mode information.

摘要

评分函数在蛋白质结合位点正确选择小分子对接构象并进行排序的能力高度依赖于靶点,这给基于结构的药物发现带来了挑战。在此,我们描述了一种虚拟筛选方法,该方法将基于能量的对接评分函数与分子相互作用指纹图谱(IFP)相结合,以基于G蛋白偶联受体(GPCR)晶体结构识别新的配体。通过以下方式对共识评分方法进行前瞻性评估:1)发现化学结构新颖、类片段、高亲和力的组胺H1受体(H1R)拮抗剂/反向激动剂;2)基于结构选择性鉴定β2肾上腺素能受体(β2R)激动剂;3)对组合评分方法和单独评分方法进行实验验证和比较。系统的回顾性虚拟筛选模拟确定了用于鉴定H1R和β2R配体的评分截止值,并选择了用于区分β2R激动剂和拮抗剂的最佳β肾上腺素能受体晶体结构。共识方法导致对53%的β2R和73%的H1R虚拟筛选命中物进行了实验验证,其亲和力和效力高达纳摩尔级别。对β2R激动剂的选择性鉴定表明,通过整合蛋白质-配体结合模式信息,基于结构预测GPCR配体功能具有可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8d6/4919634/b8ceaf086a58/srep28288-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验